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What are the basic mechanisms of 
electronic transitions in molecular dynamic processes? 

by HIROKI NAKAMURA 
Division of Theoretical Studies, 

Institute for Molecular Science, Myodaiji, Okazaki 444, Japan 

The basic mechanisms of electronic transitions in molecular processes and their 
theoretical treatments are summarized and reviewed. These are the non-adiabatic 
(either radially or rotationally induced) transitions and the decay (auto-ionization) 
mechanisms of ‘superexcited states’. The interdisciplinarity of the concept of non- 
adiabatic transition is emphasized, and the present status of the semiclassical theory 
is inclusively summarized together with some numerical applications. Particular 
emphasis is put on the non-adiabatic tunnelling process which is supposed to be an 
important key mechanism for state (or phase) change in various fields. Definitions of 
two kinds of superexcited state are given, and their peculiarities and richness in their 
participating dynamic processes are explained. The multichannel quantum defect 
theory is outlined and recommended as a powerful theoretical tool for dealing with 
the various dynamic processes such as photo-ionization, photodissociation, auto- 
ionization, dissociative recombination and associative ionization. Some numerical 
applications are also presented in order to promote the understanding of the 
mechanisms. The underlying philosophy throughout this paper is to try to clarify 
the basic mechanisms of electronic transitions and to formulate them in a unified 
way as much as possible. 

1. Introduction 
Recent progress in laser and synchrotron radiation technology has made it possible 

to explore the world of highly excited states of molecules efficiently. In particular, the 
multiphoton ionization (MPI) technique has enabled us to investigate in detail the 
excited states of specified symmetry (Lawley 1985, Kimura 1987). Electronically highly 
excited states have intriguing characteristics compared with ground and lower excited 
states. These characteristics may be summarized as follows. 

(1) There is strong coupling between electronic and nuclear degrees of freedom. 
(2) Many competitive channels are open. 
(3) The states contribute largely to oscillator strength distribution. 
(4) They are sensitive to an external perturbation such as collision with other 

particle or external field. 
(5) Various transitions among them occur with high probability compared with 

those in the ordinary first kind of collision processes between unexcited species. 

For highly excited states, the Born-Oppenheimer approximation breaks down at 
least locally in a certain region of nuclear configuration, and the non-Born- 
Oppenheimer couplings play an essential role. In some cases even the definition itself of 
the Born-Oppenheimer (adiabatic) state loses its meaning because of the spontaneous 
decay (auto-ionization) at a fixed nuclear configuration. In general, states are densely 
populated in the high-energy region, and their contribution to oscillator strength 
distribution is naturally significant (Berkowitz 1979, Inokuti 1967, 1981). Figure 1 

0144235X/91 $3.00 0 1991 Taylor & Francis Ltd. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
7
:
3
9
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



124 Hiroki Nakamura 

0.50 

0.40 

d-P 0.30 
CTlw 

0.20 

0.1 0 

- w  

I\ 

Excitation from 

U 

6 8 10 12114 16 18 20 22 24 26 28 30 32 34 36 
I P E(eV) 

Platzman 1962a). 

shows, as an example, the oscillator strength distribution of CH, (Inokuti 1967). As is 
seen clearly, there is a large contribution from the energy region near and above the first 
ionization threshold which is designated as IP in the figure. Because of the high density, 
the excited states in this energy region are sensitive to an external perturbation and 
various dynamic processes such as auto-ionization, pre-dissociation and non-adiabatic 
transition can occur. These processes are basically competitive with each other and 
present intriguing challenging problems to be investigated. In these processes, the 
internal excitation energy can be effectively employed to induce state change (the 
collision process of this type is called collision of the second kind (Mitchell and 
Zemansky 1934, Nakamura and Matsuzawa 1970)); thus the transition (reaction) 
occurs more efficiently than that in collision of the first kind, in which the relative 
kinetic energy is used to excite the internal degrees of freedom. Furthermore the 
mechanisms of the dynamic processes involving excited states are rich in variety and 
present interesting targets of pure theoretical investigation as well (McGowan 198 1, 
Nakamura 1984a). 

The diversity of the dynamic processes involving excited species may be easily 
shown by listing the examples such as 

Figure 1. Oscillator strength distribution of CH, where R is the Rydberg energy (Inokuti 1967, 

M+hv-+M*+M++e, 
M + hv+M*+A+ B, 
M* +field+M+ +e, 
M* + field+ A + B, 
e+  M++A* + B, 
e+M+-+A+ +B-, 
A* + B+AB+ + e, 
A* + B+A + B + +e, 
A* +BC+AB+ +C+e, 
AB +hv+AB*+BA, 

resonant photo-ionization, auto-ionization, 
resonant photodissociation, pre-dissociation, 
field ionization, 
field dissociation, 
dissociative recombination, 
ion-pair formation, 
associative ionization, 
Penning ionization, 
chemi-ionization, 
photoisomerization. 

Excited states participating in these processes are classified as follows: 

(1) ordinary valence electron excited states, either optically allowed or metastable; 
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Electronic transitions in molecular dynamic processes 125 

(2) Rydberg states, in which one valence electron is excited into a high Rydberg 
orbital; 

(3) two- (or many)-valence-electron (or one-inner-shell-electron) excited states 
embedded in the electronic continuum. 

Internal energy of rovibrationally excited Rydberg states belonging to (2) can easily 
be larger than the lowest ionization potential. Electronic excitation energy of the states 
belonging to the above category (3) is also larger than the lowest ionization potential. 
These states, being unstable against auto-ionization, have very peculiar properties, and 
are called ‘superexcited states’ (Platzman 1962a, b, Inokuti 1967, Berkowitz 1979). We 
call the states of category (3) ‘superexcited states of first kind’, and the rovibrationally 
excited Rydberg states ‘superexcited states of second kind’. These superexcited states 
play an important role as the intermediate states of the various dynamic processes 
mentioned above. The physics and chemistry of these states will open a new and 
exciting area of science. 

One of the most basic questions about these highly excited states is: what are the 
basic interactions which cause the various dynamic processes? Transitions among the 
valence electron excited states are generally induced by the so-called non-adiabatic 
couplings, that is non-adiabatic radial coupling or non-adiabatic rotational (Coriolis) 
coupling. The former applies to the transitions among the adiabatic states of the same 
electronic symmetry. The latter applies, on the other hand, to those between the 
adiabatic states of the different electronic symmetry. Non-adiabatic transition is a very 
general interdisciplinary concept and represents a key mechanism of various kinds of 
state-changing phenomena not only in atomic and molecular dynamic processes (Child 
1979, Lam and George 1979, Crothers 1981, Nikitin and Umanskii 1984, Eu 1984, 
Nakamura 1986,1988) but also in many other fields such as condensed phase physics, 
surface physics and even biological systems (Nasu and Kayanuma 1980, Kayanuma 
1982, 1984a, b, 1985, Wolynes 1987, DeVault 1984, Yoshimori and Tsukada 1985). 
Avoided crossings are also closely related to the chaotic behaviour of a spectrum 
(Ramaswamy and Marcus 1981) and even to soliton-like structure (Gaspard et al. 
1989). Semiclassical theory for the non-adiabatic transitions has been quite well 
developed for one-dimensional two-state problems (Barany 1979, Nakamura 1988). 
However, it is not a clever way to deal with the transitions among the Rydberg states 
from the viewpoint of non-adiabatic transition. This is basically because the period z, of 
the Rydberg electron orbital motion (z, z 1.5 x 10- 16n3 s with n the principal quantum 
number) becomes easily comparable with or larger than that of the nuclear vibrational 
motion and because the Born-Oppenheimer adiabatic approximation does not hold 
well. A much better treatment is to regard the interaction between the Rydberg electron 
and the ionic core other than the pure Coulombic interaction as a perturbation. This 
residual interaction is effectively well represented by the R-dependent quantum defect 
pA(R),  where R is the internuclear distance. The quantum defect pA(R) is the same 
quantity as that usually used to express the potential energy of the Rydberg state (nA)  as 

En,(@= Ei , , (R)-+[n-p,(R)]-2 (in atomic units), (1.1) 

where E,,(R) is the potential energy of the core ion and A represents the quantum 
number other than the principal quantum number n. The R dependence of this 
quantum defect causes auto-ionization of the vibrationally excited Rydberg state. The 
multichannel quantum defect theory (MQDT) provides us with a powerful tool for 
investigating the various processes involving Rydberg states in a unified way (Seaton 
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C(*) +D A+ +B 

A(*)+B A+B++e 

well as scattering. It is most important to understand the central part M*. 
Figure 2. Schematic unified representation of the various dynamic processes, spectroscopic as 

1983, Fano 1970,1975, Jungen and Atabek 1977, Greene and Jungen 1985). The first 
kind of superexcited state, on the other hand, has a completely different auto-ionization 
mechanism. Since this state is embedded in the electronic continuum, this cannot be 
defined as an ordinary Born-Oppenheimer adiabatic state; in other words, this cannot 
be an eigenstate of the electronic Hamiltonian He, defined at fixed internuclear 
configuration. Auto-ionization occurs by the coupling of this state to the electronic 
continuum through H e ,  itself, or the electron-electron repulsion (electron correlation). 
This coupling is called ‘electronic coupling’ and is expressed as 

= ($contlHell$d)? (1.2) 
where $d is the electronic wavefunction of the superexcited state and $,on, is the 
electronic wavefunction of the continuum. 

This review article is organized as follows. In section 2, I would like to emphasize 
that there is no essential difference between spectroscopic and scattering problems 
from the theoretical viewpoint of understanding the fundamental mechanisms. The 
various processes listed above can be schematically summarized in figure 2. The central 
part M* represents the excited (or superexcited) unstable intermediate state. The most 
important thing is to understand the properties of this state. Differences in the various 
dynamic processes, whether they are scattering processes or spectroscopic processes, 
consist of the boundary conditions. However, the essential physics must be the same as 
that occurring in the central circle of M*. One of the most typical mechanisms working 
there is non-adiabatic transition. This transition itself occurs very locally in the region 
of avoided crossing between adiabatic states and has nothing to do with boundary 
conditions. Thus the basic theory for non-adiabatic transition can be applied to both 
spectroscopic and scattering problems. Section 3 is devoted to a summary of the 
present status of the semiclassical theory of non-adiabatic transition. Inter- 
disciplinarity of the concept is emphasized, and the basic unified semiclassical theory 
for one-dimensional radially as well as rotationally induced transitions is reviewed. 
Particular emphasis is also put on non-adiabatic tunnelling. In section 4 the dynamics 
of superexcited states are clarified. The basic theories for dealing with the dynamic 
processes are briefly explained. The MQDT is one of the most powerful theories which 
enables us to treat the various processes in a unified way. This is outlined in this section. 
As practical examples of dynamic processes, photo-ionization and auto-ionization of 
NO, and dissociative recombination and associative ionization of H, are discussed. 
Two mechanisms of auto-ionization (vibrational auto-ionization and electronic auto- 
ionization) are clarified. The MQDT analysis of the multiphoton ionization (MPI) 
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Electronic transitions in molecular dynamic processes 127 

experiment is shown to be very powerful and useful. The importance of the dissociative 
superexcited states of first kind in various dynamic processes is particularly 
emphasized. Based on the author's viewpoint, section 5 summarizes the subjects to be 
investigated in future in relation to those discussed in the text. Appendix A describes the 
derivation of the most sophisticated semiclassical formulae for the Landau-Zener-type 
and Rosen-Zener-type non-adiabatic transitions. Appendix B derives the reduced S 
matrix for the non-adiabatic tunnelling. Appendix C proves the unitarity of the S 
matrix in the MQDT. Atomic units are used throughout this paper. 

2. No essential difference between spectroscopic and scattering problems? 
Without doubt the experimental set-up for the studies of spectroscopic problems is 

very different from that of scattering processes. With respect to the mechanisms of the 
actual physical processes, however, there is not a large difference. As is easily 
conceivable, photodissociation can be formally decomposed into the following two 
processes: initial photoabsorption to an excited state and dissociation (half-collision) 
on the potential energy surface of this excited state. The photodissociation cross- 
section can actually be expressed in terms of the scattering matrix relevant to the 
collision process (Beswick et al. 1977, Takatsuka and Gordon 1981, Sato et al. 1986). 
Furthermore, in most scattering processes the essential part of the transition occurs in a 
spatially localized interaction region (reaction zone). The most important thing is to 
understand and formulate the phenomena occurring there. Once we can do that, then 
the theory can be used to analyse the spectroscopic processes governed by the same 
mechanism as well. The most typical example is the non-adiabatic transition. Suppose 
that we have non-adiabatically coupled two-state systems such as those shown in 
figure 3. The non-adiabatic transition occurs in a very much spatially localized region 
near the avoided crossing point. This transition is the same for the three different 
problems: the inelastic scattering problem (figure 3 (a)), the elastic scattering problem 

x 

a, c 
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x 
0 
a, 
C 
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(4 
Figure 3. Non-adiabatically coupled two-state problems: (a) inelastic scattering; (b) elastic 

scattering or pre-dissociation; (c) the perturbed bound-state problem. 
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I 
1 1 

(4 
Figure 4. Diagrams corresponding to figure 3. 

with resonance or a pre-dissociation process (figure 3 (b)) and the perturbed bound- 
state problem (figure 3 (c)). These three cases can be depicted diagrammatically as in 
figures 4 (aHc). Each arrow indicates the wave propagation on the corresponding 
potential energy curve. 0, (I,) represents a matrix of the non-adiabatic transition at 
the avoided crossing point Rx for the outgoing (incoming) segment of wave 
propagation. (Ox)ij[(Zdij] is the amplitude for the transition j-+i The circle with T 
represents the wave reflection at the corresponding turning point. The diagrammatic 
technique such as the one devised by Child (1974a) can be employed to analyse these 
three problems. In the case of inelastic scattering (figure 4(a)), the 2 x 2 scattering 
matrix S can be expressed as follows (Nakamura 1982, 1984a, b, 1988): 

s = P : X O X P X T X I X P X m ,  (2.1) 
where is a diagonal matrix, representing the adiabatic wave propagation from B 
to A. In the case of elastic scattering (figure 4 (b)), the scattering matrix exp (2iq) with 
phase shift q is given by 

exp (2id = exp (WO)) CSl01 - l ~ ~ o ~ l ~ ~ x T o x ~ 2 2 1 c ~  - ~ $ W X T o X ) 2 2 1  - l ,  (2.2) 
where I . .  . I designates a determinant, q ( O )  is the scattering phase shift for R 2 R, on the 
adiabatic potential 1, and 

So’ = O X P X T r X I X ,  (2.3) 

which represents the scattering matrix for R < R,. By analysing the resonance structure 
in the energy dependence of the phase shift, we can derive the expressions for the 
resonance position and pre-dissociation lifetime. In the third case of the perturbed 
bound-state problem (figure 4(c)), channel 1 is also closed and the diagrammatic 
technique leads to the following secular equation: 

IoXPXT,XTXPXT,X - 1 = (2.4) 

It is now clear that the most basic physics in these three problems consists in the non- 
adiabatic transition and the knowledge about I, and Ox is most crucial, irrespective of 
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Electronic transitions in molecular dynamic processes 129 

the boundary conditions. Even the bound-state problem shares the essential 
mechanisms with the scattering problem. The more detailed physics about I, and 0, 
will be discussed in the next section. 

The scattering matrix may be generally expressed as 

where Sin and Sou' represent the incoming and outgoing parts of the scattering process, 
is responsible for the central mechanism of the process which is independent 

of the boundary conditions. As is easily conjectured now, knowledge of Scentre can be 
directly used for problems other than the scattering process, probably even for 
problems in the condensed medium. In this sense, the concept and the theory of non- 
adiabatic transition, for instance, can be quite universal. 

Another good example is the basic idea of the quantum defect theory (Seaton 1983, 
Fano 1970, 1975, Jungen and Atabek 1977, Greene and Jungen 1985), which gives a 
uniform description of the Rydberg states and continuum and can describe the various 
processes in a unified way. For simplicity, let us consider the energy region near the first 
ionization potential of a diatomic molecule with no superexcited state of the first kind 
nearby. Even in this simple system we have the following three kinds of problem: the 
perturbed bound(-Rydberg)-states problem, auto-ionization of internally excited 
Rydberg states or resonant elastic electron scattering by molecular ion, and inelastic 
electron scattering. The basic idea of the theory consists in realizing the fact that the 
physics of the Rydberg electron in the inner region of the electron coordinate space 
(r 6 r o )  is quite different from that in the outer region (r 2 ro). In the inner region the 
electron moves together with the other electrons in the ionic core and the ordinary 
Born-Oppenheimer approximation is expected to hold well. The total wavefunction of 
the system can then be expanded in terms of the Born-Oppenheimer basis functions, in 
which the wavefunction of the Rydberg electron is expressed by using the R-dependent 
quantum defect p(R). This R-dependent quantum defect represents the effects of all the 
complicated interactions between the Rydberg electron and the core electrons in the 
inner region. In the outer region, on the other hand, the Rydberg electron moves rather 
independently from the core. The angular momentum of the electron becomes a good 
quantum number together with the quantum numbers of the ionic core. The important 
physical parameter here is the phase shift of the wavefunction measured from the one- 
centre Coulomb wave. The total wavefunction can be approximated by the close- 
coupling-type expansion. In the intermediate region (r w ro) both Born-Oppenheimer 
and close-coupling expansions are assumed to hold, and then the basis transformation 
between the two expansions leads to the coupled linear equations for the expansion 
coefficients. The key quantities in the present problem within the rotationally 
unresolved regime are 

and Scentre 

@+,= (v+Icos [npn(R)]lv), (2.6 a) 

(2.6 b) 

where lu+ ) represents a vibrational state of the ion and Iv) represents a vibrational state 
of the molecule in a Rydberg state. Depending on the boundary conditions to be 
imposed on the wavefunction in the outer region, the system of linear equations lead to 
a secular equation in the case of the bound-state problem or to an expression for the S 
matrix in the case of the scattering problem. Here again the differences among the 
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various processes appear only after the boundary conditions are applied. The essential 
physics occurring in these processes are the same and determined in the inner region; in 
other words, the basic quantities defined by equation (2.6) are the same for the various 
processes, namely the physical quantities observed in the asymptotic region are 
basically determined by the parameters defined in the inner region which is free from 
boundary condition. The MQDT will be explained in more detail in section 4. 

Now, we go back to figure 2, which tells us generally that the key to comprehend the 
various processes in a unified way as much as possible is to grasp the dynamic as well as 
the static properties of the central unstable excited or superexcited state M*. The 
various boundary conditions can be taken into account later. This is what I meant by 
saying that there is no big difference between spectroscopic and scattering problems. 
Also, the basic theory for the key mechanisms such as non-adiabatic transition can 
have a general applicability to a variety of problems. 

3. Non-adiabatic transition 
3.1. What is a non-adiabatic transition? 

A non-adiabatic transition is a very general interdisciplinary concept, meaning a 
transition among the adiabatic states defined as the eigenstates of a system under 
consideration at a fixed ‘adiabatic parameter R’. This transition is induced by a 
variation in the parameter R. The adiabatic states as a function of R make good basis 
states when the separability of the parameter R from other variables holds well, or the 
variation in R is much slower than the motion with respect to the other variables. In this 
case it is said that the ‘adiabaticity’ holds well. The adiabaticity breaks down, or the 
non-adiabatic transition occurs efficiently in such a region of R where the adiabatic 
states come close together. When the symmetries of the states are the same, they cannot 
cross each other (the Neumann-Wigner non-crossing rule) and we have a situation like 
that shown in figure 3. This is called the avoided crossing of adiabatic states. A non- 
adiabatic transition occurs very locally in the region of this avoided crossing. The 
broken lines in figure 3 are called diabatic states, which cannot be defined uniquely but 
provide us with a useful concept sometimes. If the variation in R is very rapid, then the 
non-adiabatic transition occurs with unit probability, namely the system propagates 
along the diabatic states. 

A non-adiabatic transition presents a key mechanism of a variety of physical and 
chemical phenomena, as was mentioned before. The most typical examples are, as is 
well known, atomic and molecular collisions and spectroscopic processes (Child 1979, 
Lam and George 1979, Crothers 1981, Nikitin and Umanskii 1984, Eu 1984, Nakamura 
1986,1988). Other examples are a vibrational transition in a chemical reaction (Ohsaki 
and Nakamura 1990), nuclear collision (Abe and Park 1983, Imanishi and von Oertzen 
1987), energy relaxation and phase transition in condensed phase physics (Nasu and 
Kayanuma 1980, Kayanuma 1982, 1984a,b, 1985), dynamic processes on a solid 
surface (Yoshimori and Tsukada 1985), and electron and proton transfer in biological 
as well as chemical systems (DeVault 1984, Wolynes 1987). A non-adiabatic transition 
is also one of the key mechanisms causing chaotic behaviour of the quantum energy 
spectrum (Ramaswamy and Marcus 1981). In most cases the adiabatic parameter R is 
some kind of space coordinate. This parameter, however, can be anything in principle. 
For instance, it can be a field strength in atomic and molecular processes in an external 
fields (Kleppner et a / .  1983), or the electron density in the resonant neutrino conversion 
in the Sun (Schwarzschild 1986). 
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Electronic transitions in molecular dynamic processes 131 

In the case of atomic and molecular dynamic processes in which we are interested, 
R is the interatomic distance and the adiabatic states are the ordinary Born- 
Oppenheimer states. The interaction to cause a non-adiabatic transition between them 
is a matrix element of the operator a/aR with respect to the electronic wavefunctions 
which depend on R parametrically. Because of the large mass disparity between an 
electron and a nucleus, the electronic motion is much faster than the nuclear motion 
and the separability between R and the electronic coordinates holds well generally 
unless the nuclear relative kinetic energy is very high. The localizability of the non- 
adiabatic transition at the avoided crossing point is very well satisfied. This is because 
the smaller the amount of energy transferred between different kinds of degrees of 
freedom, the more probable the transition is. 

3.2.  Radial and rotational (Coriolis) couplings 
There are two different mechanisms in the electronically non-adiabatic transitions 

between the Born-Oppenheimer adiabatic states: one is a transition induced by the 
relative translational motion of nuclei and the other by the rotational motion. These 
are explained in this section. 

For simplicity let us consider the case of a diatomic molecule AB. The Hamiltonian 
H of the system in the fixed-space coordinate system is given by 

h2 
2PAB 

H = - -Vi + He] ,  

where H e ,  represents the electronic Hamiltonian at fixed R, and PAB is the reduced mass 
of the two atoms. Transformation to the fixed-molecule coordinate system changes 
equation (3 .1)  to (Thorson 1961) 

h2 1 + H,,, + H,,, + H’ + He,, ( 3 4  

(3.3 a) 

(3.3 b) 

(3.3 c) 

where Hrot represents the rotational motion of a molecule, H,,, is the Coriolis 
interaction, J is the total angular momentum operator and L is the electronic angular 
momentum operator. The operators L ,  and U ,  are explicitly given as follows: 

L ,  =L,kiL,, (3.4) 
a i d  

8 0  s in0  a@ u, = T - + ~ - + L< cot 0, (3.5) 

where L,, L, and Lc are the components of L in the fixed-molecule coordinate system 
with the 5 axis along the molecular axis and (0, @) are the ordinary angle variables to 
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132 Hiroki Nakamura 

define the molecular axis orientation in the fixed-space system. The ordinary Born- 
Oppenheimer adiabatic states are defined by the following conventional eigenvalue 
problem: 

He,Ye'(r:RIA)=E(R:A)Ye'(r:RIA). (3.6) 
Non-adiabatic transitions between these states of the same electronic symmetry (the 
same A) are induced by the first term of equation (3.2), that is by the coupling 

The other operators have no off-diagonal element in the manifold of the same IAl. H' 
also couples the states with the same A, but its contribution is small and is usually 
neglected. The coupling (3.7) is called 'non-adiabatic radial coupling' and causes the 
non-adiabatic transition to be very much localized at the avoided crossing point 
between E,(R : A) and E,(R :A). This spatial localization can be seen as follows. If we 
use the Hellmann-Feynman theorem, we obtain 

Tad=(Y:'l-IY;') [E,(R:A)-E(R:A)]2. 
aHe' aR i 

This simply tells us that the coupling has a strong peak at the avoided crossing point 
where the adiabatic energy difference IE,(R : A) - E,(R : A)( becomes a minimum. From 
the energetics point of view also, the avoided crossing point is the position for the 
transition to occur most dominantly. The transitions between the adiabatic states of 
different electronic symmetries (different 1.11) are, on the other hand, induced by the 
Coriolis coupling H,,, and have quite different porperties. In order to derive the explicit 
expression for the corresponding coupling matrix element, let us introduce the 
electronic-rotational basis functions defined as (Nakamura 1984a, Mies 1980) 

1 
@:(A)= -[\fre'(r: RIA+)* Ye'(r: RIA-)] Y(R : JA) ,  for A +o, (3.9) 

J2 

@"+E)= Ye'(r:R1P)Y(R:JZ), for A = O ,  (3.10) 

where Y(k  : J A )  is the eigenfunction of H,,c 

H,,, Y(R : JA) = [J(J + 1) - 2A2] Y(R : JA). (3.11) 

There is no coupling between the two sets {@<(A)} and {@<(A)} .  The Coriolis (or 
non-adiabatic rotational) coupling matrix element within each set is explicitly given by 

T o ,  = < @i ( A  l)IHco,l@* (A,))  

where 

L,(J,  A )  = [(J + A)(J * A + 1)]1'2. 

(3.12) 

(3.13) 
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Electronic transitions in molecular dynamic processes 133 

The transitions induced by this coupling are generally not very strong compared with 
the transitions induced by T a d .  However, this coupling plays an important role in 
various processes, since this couples the states of different symmetries which cannot be 
coupled by Tad. For instance, this is known to play a decisive role in some ion-atom 
collision proccesses (Wille and Hippler 1986). In spectroscopic problems, this coupling 
is called 'heterogeneous perturbation' in contrast with the homogeneous perturbation 
for the radial coupling case (Herzberg 1950). As can be easily conjectured from 
equations (3.8) and (3.12), the two kinds of non-adiabatic transition have quite different 
properties from each other. Since the electronic matrix elements ( Yel(Al)lLk I Ye1(A2)) 
in equation (3.12) are generally moderately varying functions of R,  the Coriolis 
coupling T,,, has a strong peak at the closest approach (turning point). On the other 
hand, the corresponding adiabatic potential energy curves can have a real crossing 
because of the symmetry difference. This means that in contrast with the radially 
induced non-adiabatic transition the rotationally induced transition cannot be 
spatially localized, because the crossing point is most favourable from the energetics 
point of view, while the turning point is most important as far as the coupling strength is 
concerned. 

In the purely quantum-mechanical treatment the total wavefunction Y(r, R) which 
is a solution of the Schrodinger equation 

HY',=EY', (3.14) 

is usually expanded in terms of @i(r ,  R : RIA) as 

(3.15) 

where m distinguishes between the states of the same electronic symmetry A, and 
F;,(R) represents the relative translational motion in the state (mA). Insertion of 
equation (3.1 5 )  into equation (3.14) leads to the conventional close-coupling equations 
for FJ,,(R), in which both Tad and Tot play essential roles in coupling the various states. 

Actual numerical calculation is carried out either by direct solution of the above- 
mentioned coupled equations in the adiabatic state representation or by introducing 
some kind of adiabatic-to-diabatic transformation (Baer 1985). In eaither case, 
however, we need information on T a d  and T,,,. In spite of the recent progress of the 
quantum-chemical computational technique, however, such information on Tad and 
T,,, is still very scarce, unfortunately. Here, we explain a quite different approach, that is 
the semiclassical analytical theory for a non-adiabatic transition. This is discussed in 
the following sections. 

3.3. Semiclassical theory for radially induced non-adiabatic transitions 
Curve-crossing problems have a long history, and the Landau-Zener transition 

probability for one passage of the crossing point is well known. This is given by 

(3.16) 

where Vis  the coupling strength between the two diabatic (crossing) states V,(R) and 
V2(R), AF is the difference between the slopes of the diabatic potential curves and vx is 
the velocity of the relative motion at the crossing point R,. For the overall scattering 
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Figure 5. Two typical curve-crossing schemes: (a) Landau-Zener type where E represents the 
case when the avoided crossing point is located in the classically inaccessible region; 
(b)  Rosen-Zener type. 

process which involves the two passages of the crossing point (once on the way in and 
once on the way out), the total transition probability is given by 

sp2 = 2ppi( 1 - pi?),. (3.17) 

Equation (3.16) is very useful especially for understanding the qualitative nature of a 
non-adiabatic transition. However, we should be careful, because this is not 
quantitatively accurate. For instance, this cannot be used in the case when the crossing 
point is located in the classically forbidden region (the case of E = E' in figure 5 (a)). The 
following are assumed in the derivation of equation (3.16). 

(1) Diabatic potentials are assumed to be linear. 
(2) Diabatic coupling V is constant. 
(3) Relative translational motion is assumed to be a straight line with constant 

velocity v,. 

After the pioneering work by Landau (1932), Zener (1932) and Stuckelberg (1932), 
many studies have been carried out by many workers, and we have now quite a 
sophisticated formula for the radially induced non-adiabatic transition (Barany 1979, 
Crothers 1981, Nakamura 1986, 1988). 

In addition to the above-mentioned so-called Landau-Zener-type non-adiabatic 
transition, there is another important kind of non-crossing non-adiabatic radially 
induced transition, namely the Rosen-Zener (1932) (or Demkov (1964)) type, in which 
the diabatic potential curves V,(R) and V2(R) are parallel ( V2 - V, =constant = A )  and 
the diabatic coupling V has a strong exponential dependence on R (V= A exp (- aR)) 
(see figure 5 (b)). Although the corresponding adiabatic potentials have no conspicuous 
avoided crossing, the transition occurs quite locally at R ,  where the two adiabatic 
curves start to diverge. Exact definition of R ,  is given below. The original formula for 
the overall transition probability YRz is given by 

(3.18) 
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Electronic transitions in molecular dynamic processes 135 

where 

(3.19) 

In the limit A+O the formula coincides with that for the exact resonant case (Mott and 
Massey 1965). It should be noted that both pL2 and p f !  go to zero (no non-adiabatic 
transition) in the low-velocity limit ( ~ - 0 )  but, in the high-velocity limit (ox-+ a), 
p f J +  1 while pk?+$. In the limit d +O, pgd also goes to $. A quite sophisticated formula 
for the Rosen-Zener-type transition is also now available (Crothers 1976, Nakamura 
1986, 1988). 

In the following, we present the best semiclassical formulae for both the Landau- 
Zener- and the Rosen-Zener-type non-adiabatic transitions. Derivation of these 
formulae is given in Appendix A, being based on the comparison equation method 
(Miller and Good 1953) and the spirit of the path-integral formulation (Miller and 
George 1972, Miller 1974). In the case of the Landau-Zener-type two-state full collision 
process depicted in figure 5 (a), the 2 x 2 scattering matrix is given by equation (2.1). 
Each matrix in this expression is explicitly given as follows (Nakamura 1982, 1984a, b, 
1987, 1988): 

[k,(R) - k,(co)] dR - ik,(co)R, 

[PxTJ,, = a,, exp 

(1 - pLZ)'/' exp (i4s) 
PLIZ exp (ioo) 

- pLkz exp ( - io,) 
(1 - PLz)1'2  exp (- i4s) 

Ox=( 

I, = 0, (transposed), 

where 

R* 

Rx 
o,+iS= s [k,(R)-k,(R)]dR, 

(3.20) 

(3.21) 

(3.22) 

(3.23) 

(3.24) 

(3.25) 

(3.26) 

(3.27) 

(3.28) 

(3.29) 

As was explained before, the matrices PA., . B  represent the wave propagation from B to 
A without any transition along the adiabatic potential curves. The matrices (Ix),,, and 
(Ox)nm give the non-adiabatic transition amplitudes for the rn-to-n transition in the 
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incoming and outgoing segments respectively. R ,  is a complex intersection point of the 
two adiabatic potentials E,(R)  and E2(R) in the upper half of the complex R plane. The 
scattering matrix element and the overall probability for the transition 1-2 are 
given by 

S L Z  - S L Z  - 
21 - 12 - 2iCPLAl - P L Z v 2  sin (@+ 4s) 

xexp(i J [k,(R)-kk,(co)]dR-ik,(co)Tl 
Ti 

+ i  sm [k2(R)-k2(m)]dR-ik2(co)T, (3.30) 

(3.31) 
T2 

~ ~ 2 - 4  YLz = IS2 1 I - pLZ(l - pLZ) sin2 (o + &), 
where 

k , (R)dR-  k,(R)dR. s:: (3.32) 

Equations (3.24) and (3.31) replace equations (3.16) and (3.17) respectively. It should be 
noted that the integration of equation (3.25) is a complex integral in the complex R 
plane, and pLz looks completely different from pi'. However, it can be shown that pLz 
reduces to pi', when the adiabatic potentials are obtained by diagonalizing the diabatic 
Hamiltonian matrix and all the assumptions mentioned before are satisfied. The phase 
terms appearing in equations (3.30) and (3.3 1)  are completely missing in equation (3.17). 
The work of Stuckelberg (1932) is in this sense more elaborate than those of Landau 
and of Zener and gives a sine term as in equation (3.31). The phase & is due to the non- 
adiabatic transition and is called the Stokes phase correction. When the total phase 
a+ dS is large and the random phase approximation can be applied (sin2 ~ i ) ,  then 
equation (3.31) reduces to equation (3.17) when pLz is replaced by pi'. One interesting 
point to note in the above-mentioned sophisticated semiclassical theory is that the non- 
adiabatic radial coupling matrix element T a d  defined by equation (3.7) or (3.8) does not 
appear anywhere in the formula and only the information about the adiabatic 
potentials E,(R) is required. Interestingly, Tad is effectively replaced by the complex 
integration to define 6. As is shown in Appendix A, the adiabatic energy difference 
AE(R) = E,(R) - E,(R)  has a complex zero R ,  of order 3 and Tad has a pole of order 
unity there: 

(3.33) 

This analytical property of AE(R) and Tad in the complex R plane underlies the 
derivation of the Landau-Zener and Rosen-Zener formulae. The fact that the pre- 
exponential factor of pLz is unity originates in this property (Demkov et al. 1978). 

In the case of the Rosen-Zener-type collision process depicted in figure 5 (b), the 
scattering matrix is also given by equation (2.1). The difference from the Landau-Zener 
case appears in the matrices Ox and I,( = &) as follows: 

(3.34) 

pRZ = [ 1 +exp (241 '. (3.35) 
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Electronic transitions in molecular dynamic processes 137 

It should be noted that cro and 6 are the same as defined by equation (3.25), that R, is the 
complex zero closest to the real axis in the upper half of the complex R plane and that 
the Stokes phase correction r$s does not appear. The scattering matrix element and the 
overall probability for the transition 1-2 are given by 

sRZ- RZ , - S12 = 2i[ pRz(l - pRz)]1'2 sin cr 

x exp(i lm [k,(R)-k,(co)] dR-ik,(oo)T, 
TI 

(3.36) 

PRZ = (S!F12 = 4pRz( 1 - pRz) sin2 G 

= sech2 6 sin2 cr. (3.37) 

When the diabatic potentials satisfy the conditions of the original Rosen-Zener model 
(V, - V, = constant = A and V= A exp (- aR)), it can be directly shown that 6 defined by 
equation (3.25) reduces to 7cA/2havX (see equation (3.18)). The analytical property of AE 
and Tad is the same as that of the Landau-Zener case. The difference between the 
Landau-Zener and Rosen-Zener formulae comes from the different asymptotic 
expressions of the Weber function used in the comparison equation method (see 
Appendix A). 

It should be noted that the formulae presented here are valid for the case when the 
turning points are smaller than the avoided crossing point, namely the case when the 
avoided crossing point is located in a classically accessible region of~R. When the 
turning point becomes larger than the avoided crossing point (the case E=E' in 
figure 5 (a)), the phase integral between the two points is pure imaginary and a certain 
modification of the above formulae becomes necessary (Suzuki et al. 1984). For 
instance, when both Tl and T2 are larger than R,, the exponent parameter 6 should be 
modified as follows: 

6 = h (  jR' [k1(R)-k2(R)]dR)+ j T z  (k,(R)(dR- IT' (k,(R)(dR. (3.38) 
Rx Rx Rx 

3.4. Unijied semiclassical theory 
As was mentioned before, the Coriolis coupling problem has quite a different 

property from the radial-coupling problem. As a naive extension, the original Landau- 
Zener formula may be considered to be applicable directly to a rotational-coupling 
problem, in which the Coriolis coupling plays a role of a diabatic coupling potential 
and the adiabatic potentials are taken to be the diabatic potential energies. This idea 
does not work well, however, because the Coriolis coupling has quite a strong R 
dependence (Russek 1971). Also, the Landau-Zener formula is not applicable to the 
case of the 0-K degeneracy at the united atom limit R = 0 (Wille and Hippler 1986), since 
the Coriolis coupling has a pole of second order at the crossing point R = 0. 

A good analytical theory to deal with the rotationally induced non-adiabatic 
transitions is thus required. A unified treatment of the two kinds of non-adiabatic 
transition (radially induced and rotationally induced) would be more desirable. 
Furthermore, in order for such a theory for two-state problem to be extendable to a 
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multilevel curve crossing problem, a transition (either radially induced or rotationally 
induced) should be made to occur spatially locally at a certain internuclear distance. 
Here, we introduce the dynamical-state (DS) representation which meets all the 
requirements mentioned above (Crothers 1971, Nakamura and Namiki 1980, 1981, 
Nakamura 1982, 1984a, b, 1986, 1988). 

The DSs are defined as the eigenstates of the Hamiltonian (see equation (3.2)) 

H d y n  + Hmt + + H (3.39) 

as 

HdynYi(r, R : R) = Ei(R)Yi(r, R : R). (3.40) 

As is clear from this definition, the DSs are the eigenstates of the rotating collision 
complex at a fixed size of the complex and thus are dependent on the total angular 
momentum J .  In other words, the states are completely diagonal with respect to 
nuclear and electronic rotations. The wavefunction YJ(r, R : R )  can be expanded in 
terms of the electronic-rotational basis functions defined by equations (3.9) and (3. lo), 
namely the eigenvalues EJ(R) are obtained by diagonalizing a matrix of Hdyn spanned 
by the electronic-rotational basis functions. Since the dynamical states are the 
eigenstates of Hdyn, transitions between them are exclusively induced by the first term of 
equation (3.2), that is all transitions are reduced to the radially induced ones 
irrespective of the type of original coupling in the adiabatic-state representation. 

In order to show more explicitly the nature of this new (DS) representation, let us 
consider the simplest two-state case composed of one II state and one C state: 

YJ = c;@J(X) + Ch@+(rI). 

The conventional diagonalization of a 2 x 2 matrix leads to 

where 

AE(R) = EJ(R : II) - EJ(R : X), 
h2 

[ J ( J +  1)-2A2]+- (L2>n,  EAR : A ) =  E(R : A ) +  ~ 

h2 
2PABR2 2p.d' 

vo= (Ye'(qlL-IYe'(n+))* 

The radial coupling between Y i  and Y< is given by 

(3.41) 

(3.42) 

(3.43) 

(3.44) 

(3.45) 

(3.46) 

(3.47) 

It is easily seen that the new states E:,,(R) avoid crossing each other and that the 
analytical properties are the same as those of the ordinary radial coupling case in the 
adiabatic-state representation, namely the DS energy difference E;(R) - E{(R) has a 
complex zero of order 4 and the radial coupling (equation (3.47)) between them has a 
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1.0 I 1 

.- 0 
a 2 0.5 
e n 

- 

0.0 
1.0 t 0.0 t 1.0 

crossihg point (turning point) crossing point 
R-p (a.u.) 

Figure 6. The localization of the rotationally induced transition in the DS representation. The 
model potential is given by equation (3.48) (Nakamura and Namiki 1981). The collision 
velocity o is 0.5 atomic units and the impact parameter p is 0 6  atomic units. 

pole of order unity there. This is true even for the case of the 0-n degeneracy at R = 0. 
Thus the analytical theory described in the previous section can be applied to the 
rotational-coupling problem. Furthermore, the avoided crossings between the 
adiabatic states of the same symmetry remain avoided in the DS representation, 
although they can be deformed by rotational couplings with other states. Thus, once we 
move into the DS representation, the radial and rotational couplings can be treated in a 
unified way by the semiclassical theories described in the previous section. Also, all 
non-adiabatic transitions are localized at the new avoided crossing points. 
Localization of rotationally induced transition in the DS representation is 
demonstrated in figure 6, where the following model potential is used to simulate the 
two-state (lx, and 20,) problem in the Nef +Ne collision system: 

AE(R)= 2.71 - - - atomic units, 
(115 :) (3.48) 

V, = 1.42 atomic units. (3.49) 

The step function in the figure represents the semiclassical approximation. The 
asymptotic value on the way out at R > Re (R,) equals PLZ given by equation (3.31). In 
the adiabatic-state representation the transition is not localized anywhere. The 
usefulness of the DS representation has been further demonstrated by Suzuki et al. 
(1984) and Nakamura (1983, 1984a,b). 

The idea of this representation can be summarized and generalized as follows. In 
general, whatever the coupling which can be defined at fixed R, we employ the 
representation in which this coupling is diagonalized. Once we move into this new 
representation, the semiclassical theory presented here can be applied in a unified way 
irrespective of the nature of the original coupling. The idea can be, in principle, 
generalized to more complicated systems by employing the hyperspherical coordinate 
system. The hyper-radius p represents the size of the rotating collision complex and 
plays the same role as R. The total Hamiltonian in the fixed-body frame can be 
generally expressed as 

(3.50) 
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140 Hiroki Nakamura 

(3.51) 

where N is the number of particles in the system, A(51) represents the grand angular 
momentum operator with respect to the angle variables 51 (the total of the 
hyperspherical angle variables and the Euler angles). The DSs are defined as the 
eigenstates of Hdyn. 

3.5. Multilevel curve-crossing problem 
As is clear from the previous two sections, the two-state curve-crossing problem can 

be analysed quite accurately by the sophisticated semiclassical theory, irrespective of 
the kind of coupling that is responsible for the transition and of the kind of problem 
(scattering, spectroscopic or bound state) concerned. In reality, however, on many 
occasions we haw to deal with multilevel systems. 

Demkov and Osherov (1968) showed that in a special level scheme such as that 
shown in figure 7 the overall transition probabilities can be simply expressed as a 
product of the non-adiabatic transition probability at each crossing point no matter 
how close to each other the levels are. In the more realistic cases such as that shown 
later in figure 9 (a), the transition probabilities cannot be so simple and the phase terms 
should be taken into account. Woolley (1971) showed the importance of the phase 
terms by considering certain model systems with rather well separated crossing points. 
Korsch (1983) studied the similar three-state problem using the Magnus 
approximation. 

The general multilevel problem is too difficult (almost impossible) to be formulated 
fully analytically. It is easily conjectured, however, that the scattering matrix for a 
multilevel system can be explicitly expressed in the form of a matrix product just like 
equation (2.1), if the avoided crossing points are well separated from each other. 
Taking, for instance, the three-state problem shown in figure 8, we can express the 
scattering matrix as (Nakamura 1982) 

S = P ~ A O A P A B O B P * , B I B P B A I A P A m ,  (3.52) 

where A and B represent the outer and inner avoided crossing points respectively. The 
meanings of the various matrices are basically the same as before, although all of them 

I 

/ E5 

R 
Figure 7. Potential-energy-level scheme studied by Demkov and Osherov (1968). 
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I 

T1 T2 T3 B A 
I N T E R N U C L E A R  DISTANCE R 

Figure 8. An example of a three-state potential diagram. 

are 3 x 3 matrices in the present case. The matrices 0 and I have the non-zero 2 x 2 
submatrices defined by equations (3.22) and (3.23). For instance, I, in equation (3.52) is 
given by 

(3.53) 
(1 - pB)l/’ exp (i@) exp (ia:) 

0 0 

This simple generalization of the two-state semiclassical theory has been applied to 
the model three- and four-state systems, and even to the cases in which the avoided 
crossings cannot be regarded as isolated from each other. Although it is not easy to 
formulate a quantitative criterion for the validity of the approximation, the numerical 
studies indicate that the applicability may be surprisingly wider than usually 
anticipated (Nakamura 1987). Here, we report the results of the four-state case. The 
model potential system employed is shown in figure 9. The diabatic potentials are (in 
atomic units) 

(3.54) 

where 

(3.55) I Vo= 129.62, V2o=0.03401, 

V30 =0.06, V4, = 0024004, 

b=0*5915, a=0.3, R,=6.0, d=0.16. 

The diabatic couplings are taken as follows: 

v, 3 = v,, = v,, = v,, = 0.002. (3.56) 
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0.21 

* 
Q 
S 
W 

0.01 

- m 
c, 
S 
Q 
+ 0.0 
0 
Q 

.- 
’ 

-0.01 . 

11.0 11.5 

R (a.u.) 

(4 
Figure 9. (a) The four-state model potential system of equation (3.54) (the case when 

V,, = 0.03 atomic units and V,, =0.02 atomic units). (b) Potential curves of the four-state 
model system with V,, = 0.01 atomic units and V,, = 0.004 atomic units: (-), adiabatic 
potential energies; (---), diabatic potential energies. Only the vicinity of the crossings is 
shown (Nakamura 1987). 
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1.0 

143 

. 

.- c - .- 
P m 
P g 0.5 
n .  

0.08 0.085 0.090 0.095 0.10 

E (a.u.) 

(4 

- 
0 

I-, 

0.08 0.085 0.090 0.095 0.10 
E (a.u.) 

(4 
Figure 10. Transition probability P as a function of energy E for the four-state system 

(V,, = 0.03 atomic units and V,, = O m 4  atomic units) (Nakamura 1987). 
(4 

Pl, Pl, Pl, 

..... Semiclassical ~ 
--- 

Exact 0 A 

The dash-dot line is the semiclassical result for P,, with phases totally neglected. The 
dash-two-dot line is that with the Stokes phase & neglected. 

(b) 

Semiclassical ~ - - - - -  --- 

Exact 0 A X 

The dash-dot line is the same as above for PZ3. 
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0.080 0.085 0.090 0.095 0.10 

E (a.u.) 
(a> 

0.08 0.085 0.090 0.095 0.10 

E (a.u.) 
(4 

Figure 11. The same as figure 10 for V2,=001 atomic units and V,, =0004atomic units. 
(a) (0), P 1 2 ;  (A), P13; (x), PI+ (b) The same as figure 10(b). 

The level separations are typical orders of vibrational energy spacing. Figure 9 (b) 
magnifies the potential curves in the vicinity of the crossings for the case V,, =0.01 and 
V40 =0.004. The numerical results for the transition probabilities are shown in figures 
10 and 1 1 for the cases (Vzo, V40) =(003,0.004) and (V20, V40) = (0.01,0.004) 
respectively. For simplicity, we have assumed that cro M 0 and 6 M 6fJ estimated from the 
diabatic potentials. The R ,  are also approximated to be the crossing points of the 
diabatic potentials. The exact numerical solutions are obtained by using the R matrix 
propagation method of Light and Walker (1976). The agreement between the exact 
numerical and approximate semiclassical results is surprisingly good. The importance 
of the phases should be noticed. The chain lines in figure 10 represent the results for PI, 
(figure lO(a)) and P,, (figure lO(b)) with all phases neglected. Without phases no 
oscillation as a function of E appears. The significance of the Stokes phase & can also 
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Electronic transitions in molecular dynamic processes 145 

be seen from figure 10. The difference between the solid and the dash-two-dots curve in 
figure 10 (a) is the manifestation of the effect of &. In the two-state approximation, the 
non-adiabatic coupling Tl,(R) can be estimated as follows (see equation (3.47)): 

(3.57) 

where Aclz=Vl(R)-Vz(R)xAF(R-R.J and V,, is assumed to be constant in 
the second equation. The coupling Tl,(R) takes half of the maximum value at 
R = R ,  & 2V1 JAF. In the present case where V,, = 0.01 and V,, = 0-004 (figure 9 (b)), 
2Vlz/AF ~ 0 . 3 ,  while IRC-RgI ~ 0 . 2 8 .  This means that both couplings overlap 
substantially on the real R axis. In spite of this substantial overlap, the semiclassical 
treatment based on the two-state theory works very well. This is probably because the 
fundamental analytical properties of adiabatic coupling in the complex R plane are 
correctly taken into account in the basic two-state theory. When the potentials satisfy 
well the assumptions of the original Landau-Zener model as is the case studied here, we 
can use the replacements O,ZO and 6,,w6@ and avoid the complex integration in 
equation (3.25), which is a great inconvenience of semiclassical theory. The results 
shown in figures 10 and 11 are very encouraging, but this is just a case study and more 
extensive work is necessary. 

3.6. Non-adiabatic tunnelling 
Tunnelling through a potential barrier has been the subject of theoretical interest 

and practical importance in various fields since the early days of quantum mechanics. 
One-dimensional tunnelling has presented a very good subject for semiclassical theory. 
The theory is now well developed and has been successful in interpreting various 
interesting phenomena (Jortner and Pullman 1986). However, the multidimensional 
theory still remains to be developed, unfortunately (Razavy and Pimpale 1988). 

Here, we consider a seemingly similar but actually quite different problem, that is 
tunnelling through the potential barrier which is created by the interaction with 
another state (figure 12). The diabatic curves have slopes of different sign, and the 
coupling between them creates the barrier. In other words, without this diabatic 
coupling, no transition from the right side to the left side or vice versa can occur. The 
ordinary tunnelling of the single potential mentioned above corresponds to the strong 
diabatic coupling limit, in which the upper adiabatic potential curve is located far 
above and can be forgotten. In general, however, this non-adiabatic tunnelling has 
quite a different nature from the single-potential tunnelling. This is not necessarily well 
recognized. In a sense, the non-adiabatic tunnelling process can be controlled by the 
diabatic coupling. For instance, it can be switched on and off by switching the coupling. 
This type of transition must present a very important mechanism of state (or phase) 
change in various fields. Because of the mathematical difficulty, however, a good 
approximate analytical solution has not yet been obtained, unfortunately. Analysing 
the several formulae proposed so far, the present author has recently reported the 
working equations for non-adiabatic tunnelling (Nakamura 1987). In this section these 
formulae are presented together with the numerical applications. 

The first most basic question is the non-adiabatic tunnelling probability. Several 
studies have been reported so far (Ovchinnikova 1965, Laing et al. 1977, Coveney et al. 
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-0.2 -0.1 x=o 0.1 0.2 
Figure 12. Model potential system for non-adiabatic tunnelling (equation (3.66)) (Nakamura 

1987): (---) adiabatic potential energies; (-), diabatic potential energies. 

1985). Among them the work by Coveney et al. (1985) is most elaborate. The formula 
that they recommend is a kind of renormalization of the perturbation expression 
obtained by Ovchinnikova (1965) and is given by 

B(6) exp (- 22) 
1 + B(6) exp (- 22) ’ P ,  = 

where 

(3.58) 

(3.59) 

6 is defined by (see equation (3.25)) 

6 = Im ( jR* [rc,(R) - rc,(R)] dR 
Rx 

with 

, n = l , 2 .  

(3.61) 

(3.62) 

If the adiabatic potentials E,(R) are obtained from the linear diabatic potentials 
K(R) = F,(R - R,) and the constant diabatic coupling as in the original Landau-Zener 
model, then 6 is reduced to 

(3.63) 
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where AF = IF, -F21 and CX is the absolute value of the imaginary velocity at the 
crossing point. Equation (3.63) has the same form as 6fiin equation (3.16). The function 
B(6) is a monotonic function of 6 (Child 1974b). The integration limits b,  and c1 are the 
turning points of the lower adiabatic potential (see figure 12). These are real when the 
energy E is lower than the maximum ET of the lower adiabatic potential and pure 
imaginary, otherwise. It should be noted that, in the adiabatic limit (a+ a), B(6)+ 1 
and PL coincides with the single-potential tunnelling probability T (see equation 
(3.65 a)) and that, in the diabatic limit (6+0), B(6)-+26 and PL-+26 exp( -22)+0. 
Equation (3.58) works acceptably well at lower energies E 6 ET, the minimum of the 
upper adiabatic potential. In other words, this formula cannot be used at higher 
energies E 2 EY. The formula that we recommend at these higher energies is 

1 + cos (24) 
l+d+cos (2~$)~’  

P ,  = 

where 

exp ( - 22) 
1 +exp(-22)’ 

T=  

(3.64) 

(3.65 a) 

4 = - Yz(b2, c2) + 4s (3.65 b) 

(3.65 c) 

(3.65 d) 

The integration limits b, and c2 are the turning points of the upper adiabatic potential 
and thus y, = 0 for E < ET. The phase 4s is the Stokes phase defined by equation (3.26) 
and p is given by equation (3.24). The first factor in equation (3.64) is the same as that 
obtained by Ovchinnikova (1965), if 4s is neglected. The second factor T represents the 
probability of tunnelling through the lower adiabatic potential. 

The results of numerical applications are shown in figure 13 (Nakamura 1987). The 
model potential employed here is the following (see figure 12) (in atomic units): 

a 
Vl(x)=  V,,exp(-ax), V2(x)= V,,exp(ax), V12(x)= V,exp( -2.’) (3.66) 

where V,, = 0.5, a = 10 and V, = 0.05 (weak), 0.1 (intermediate), 0.2 (strong). The 
reduced mass p is taken to be 1000. As is seen from figure 13, equation (3.64) with the 
tunnelling correction works quite well even at E 5 EY. The broken curves in figure 13 
represent the single-potential tunnelling probability T It should be noted that the 
definition of 6 is not necessarily unique in the energy range ET< E < ET. Here the 
following expression was employed: 

(3.67) 

Another different expression was also tried, but no substantial deviation in the final 
results was found. Thus, as is seen from figure 13, the combination of equation (3.58) 
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and (3.64) can be regarded as almost usable in the whole energy range, although the 
approximation becomes slightly worse in the region of the crossing of the two 
approximate results. 

In order to analyse the various problems associated with non-adiabatic tunnelling, 
knowledge of only the probability such as equation (3.58) and (3.64) is not sufficient. 
The most comprehensive quantity is the following matrix A (the reduced S matrix) 
which connects the waves on both sides of the tunnelling barrier (see figure 15 later) 
(Nakamura 1987): 

[ u; ”1 =*[ 3. (3.68) 

1 .o 

1 .o 
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/’ 
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/ .’ 
0.3 0.5 0.7 0.9 1.1 
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EP Ex EF 

(4 

,/--- 
0 0000 0 0 

0 
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/ 
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1 .o 

0.3 0.5 0.7 0.9 1.1 
t ! E (a.u.> t 

(4 
EY Ex E," 

Figure 13. Non-adiabatic tunnelling probability as a function of energy E for (a) 
V, =0.05 atomic units (weak-coupling case), (b) V,=O.l atomic units (intermediate- 
coupling case) and (c) V, = 0.2 atomic units (strong-coupling case): -, exact numerical 
result; -- -, single-potential tunnelling probability; (0) equation (3.58); (A), equation 
(3.64); ( x ), equation (3.64) without tunnelling correction (Nakamura 1987). 

where V; and V; are the coefficients of the outgoing and incoming waves along the 
lower adiabatic potential E l @ )  on the right side of the tunnelling region and U', and U ;  
those on the left side. The wavefunctions in each region are given by 

Yrigh1% --V;exp(ij:k,(R)dR)+V';erp( -i]:kl(R)dR), (3.69) 

YlefI% -U;exp(ij:lk,(R)dR)+U;exp( -ij:lkl(R)dR). (3.70) 

Let us first consider the low-energy case for which A is denoted as A L  below. The non- 
adiabatic tunnelling probability is given by IA4,12 = JAi1l2 =PL. The final expressions 
for the matrix AL are 

(3.71 a)  A L  - A L  - 22 - - (1 - PL)l12 exp (ini), 

A L  , - A L  - - - PLI2 exp ( - ini). (3.71 b) 

The phase factors are determined from the following conditions. 

(1) There should be unitarity and symmetry of the matrix A. 

(3) The scattering phase shift in the case of the potential system such as that shown 
in figure 14 should coincide with the corresponding proper one in the diabatic 
(no tunnelling) limit (q\O)(cl) + n/4) and the adiabatic (S-t co) limit (equation 
(3.72)) below with PL replaced by T).  

(2) At l  = A $ , .  

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
7
:
3
9
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



150 Hiroki Nakamura 

0.1 5 

)r 0.10 F 

- 
(d 

c 
.- - 
0 0.05 
a 

0.0 
bl/ R,i jc, I 

2.0 2.5 3.0 
R (a.u.) 

Figure 14. Two-state curve crossing system for elastic scattering accompanied by non- 
adiabatic tunnelling. E,  represents a resonance position. 

’ 
v; 
- 

Figure 15. Diagram for the energy E G E Y .  

The scattering phase shift q in the case ofenergy Ein figure 14, whose corresponding 
diagram is shown in figure 15, is given as follows: 

1 - (1 - PJ”2 
1 +(1  - P p  

Tc 
qL=q\O)(cl)+-+tan-l 4 

(3.72) 

where 
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The position E ,  and width r of a resonance, if any, are roughly given by 

E=E,~y , (a l ,b , )=(n+~)7c ,  n=O, 1,2 ,... , (3.75) 

(3.76) 

Let us next consider the higher-energy case E' in figure 14. The corresponding 
diagram is shown in figure 16. By using the diagrammatic technique explained before, 
we can obtain the following expressions for the reduced S matrix (denoted as AH) 
corresponding to the first term in equation (3.64): 

A"?, =ip[l+(1-p)exp(-2i4)]-' exp[2iy2(b,,Rx)-2io,], (3.77a) 

JH ,, - -ip[l+ (1 -p)exp (-2i4)]-' exp [2iy,(Rx, c,) + 2iao], (3.77 b) 
A H  1 2 -  - A H  21  - -2(1-p)"2[1+(i-p)exp(-2i~)]-1cos~exp[iy,(b,,cz)]. (3 .774  

The first factor in equation (3.64) is equal to lAYz12. The derivation of equations (3.77) is 
given in Appendix B. Taking into account the tunnelling correction, we have proposed 
the following final expressions for the reduced S matrix: 

AYl = - i( 1 - PH)'/' exp [2iy,(b,, R,) - 2ia, - i@], (3.78 a) 

A?, = - i( 1 - PH)ll2 exp [2iy,(Rx, c,) + 2i0, - i@], (3.78 b) 

(3.78 c) 
- 

AH 1 2 -  - A H  21  - -AY,T1/2=PA'2exp [iy2(b2,c2)-i@], 

where 

(3.79) 

It can easily be shown that the matrix AH is unitary and symmetric. The scattering 
phase shift is given by 

where 

Figure 16. Diagram for the energy E 2 ET. 
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The numerical application was made to the following model potential system (see 
figure 14): 

(3.82) I VdR) = V,, exp 1 - 3(R - Rxll, 

V,(R) = 0.15 + 0.1 exp [ - 3(R - 2)] {exp [ - 3(R - 2)] - 2}, 

K2(R)=0015exp [- 1.5(R-Rd2], 

where the crossing point R, = 2.35 and V,, can be expressed as a function of R,. The 
elastic scattering cross-section defined as 

(3.83) 

is shown in figures 17 and 18. Except for the energy region E z 0 1  au, the semiclassical 
approximation works well. In particular, the resonance at E z 0-069 is reproduced well 
by the semiclassical theory. The combination of equations (3.71) and (3.78) again proves 
to be of practical use. 

b 

0.05 . 

0.0 

E (a.u.) E Y  

Figure 17. Elastic scattering cross-section as a function of energy: (-), exact numerical 
result; (0), semiclassical (equations (3.72) and (3.83)) (Nakamura 1987). 

0.10 

b 

0.05 

0.12 0.13 

E (a.u.) E T  

0.08 

Ex 

Figure 18. The same as figure 17 at higher energies: (A), semiclassical (equations (3.80) and 
(3.83)). 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
7
:
3
9
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



Electronic transitions in molecular dynamic processes 153 

4. Dynamics of superexcited states of molecules 
4.1. What is a superexcited state? 

As has already been explained in section 1, a ‘superexcited state’ is defined as a state 
such that its internal excitation energy is higher than the first (lowest) ionization 
potential. This state is thus unstable against auto-ionization. However, this is different 
from an atomic auto-ionizing state in the sense that it can end up with neutral 
dissociation without ionization. The shaded area above the ionization potential in 
figure 1 actually shows this contribution. This is one of the peculiar characteristics of a 
molecular superexcited state. According to the above definition, a molecular negative 
ion whose electronic energy is higher than that of its corresponding neutral state can 
also be a superexcited state. However, in this article we confine ourselves only to the 
neutral superexcited states. As is easily seen from figure 1, the superexcited states 
contribute much to the oscillator strength distribution and are expected to play an 
important role as intermediate states in various dynamic processes (Inokuti 1967,1981, 
Berkowitz 1979, Hatano 1988). The concept of superexcitation was actually first 
introduced by Platzman (1962a, b) in order to understand the molecular excitation 
processes in radiation chemistry. 

According to the differences in auto-ionization mechanism, we classify the 
superexcited states into the following two (Nakamura 1984a, Nakamura and Takagi 
1990): 

(1) multiply (or inner-shell) excited state, which is called a ‘superexcited state of 
first kind‘ and 

(2) rovibrationally excited Rydberg state, which is called a ‘superexcited state of 
second kind’. 

In the first kind the electronic excitation energy itself is higher than the ionization 
potential at least in a certain finite range of internuclear distance (figure 19). Most 
typical examples are the doubly (two-valence-electron) excited states and the inner- 
shell-electron excited states. Auto-ionization of this kind of superexcited state is 
basically caused by electron correlation and can occur even if the nuclei were clamped, 
that is even at fixed internuclear distance. The coupling to the continuum is effectively 
expressed by the electronic coupling defined by equation (1.2), and the state can be 
characterized by the local complex potential 

where 

(4.1) 

It should be noted that the continuum wavefunction 4,,,, is energy-normalized. The 
auto-ionization lifetime z(R) at fixed R is equal to 

(4.4) 
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dissociative 
superexcited state 

(b)  
Figure 19. A schematic potential diagram for auto-ionization: (a) auto-ionization of the 

dissociative superexcited state of the first kind (electronic auto-ionization); (b) auto- 
ionization of the superexcited state of the second kind (vibrational auto-ionization). 

This type of auto-ionization is called 'electronic auto-ionization'. For instance, 
Penning ionization A* + B+A + B + +e, AB' +e, in which the excitation energy of A* 
is larger than the ionization potential of B and the quasi-molecular state A*B generally 
corresponds to an inner-shell excited state, can be treated well by this local complex 
potential method (Nakamura 1969, 1971, Nakamura and Matsuzawa 1970, Miller 
1970, Niehaus 1981). 

The auto-ionization mechanism of a superexcited state of the second kind is 
completely different from that of the first kind. The electronic excitation energy is lower 
than the ionization potential in the whole range of R, and the auto-ionization is induced 
by the coupling between electronic motion and nuclear motion, that is by the energy 
transfer from the nuclear degree of freedom to the electronic degree of freedom (see 
figure 19). This process can, in principle, be regarded as a non-adiabatic transition but 
cannot be well treated in terms of the non-adiabatic couplings described in section 3.2. 
This is because there is no conspicuous avoided crossing between the Rydberg states 
and, more seriously, the adiabatic approximation does not hold well. As was mentioned 
in section 1, the period of the Rydberg electron orbital motion (T"W 1.5 x 10-16n3 s) can 
easily be compared with that of nuclear vibrational motion at nk 10. A much more 
elegant treatment is that of a kind of diabatic-state representation. This is made 
possible by the MQDT, in which the R-dependent quantum defect p ( R )  defined by 
equation (1 .1)  represents a kind of diabatic coupling potential (Fano 1970, 1975, 1981, 
1983, Jungen and Atabek 1977, Golubkov and Ivanov 1981, 1984, Golubkov et al. 
1983, Seaton 1983, Mies 1984, Mies and Julienne 1984, Greene and Jungen 1985, 
Sobolewski and Domcke 1987,1988). This type of auto-ionization is called 'vibrational 
auto-ionization'. It should be noted that the above-mentioned classification cannot be 
unique, because the core-excited Rydberg states converging to an excited molecular ion 
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I I I I I I 1 

0.8 1.2 1.6 2.0 2.4 2.8 3.2 00 

Figure 20. Potential curves of NO (Mitchels 1981). 

can be of the first kind as well as of the second kind at the same time. These are of the 
first kind, because they auto-ionize to the lower ionization continuum by the first 
mechanism. These can be of the second kind also, because the auto-ionization to the 
higher ionization continuum to which the Rydberg states converge is possible by the 
second mechanism. 

The superexcited states, especially those of the first kind, are not well known in spite 
of their importance in various dynamic processes. Information on p,,(R) and T(R) 
(especially on T(R)) is very scarce. Figure 20 shows the potential curves of NO taken 
from the review by Mitchels (1981). This immediately indicates that there must be many 
superexcited states of the first kind which go into the first ionization continuum at small 
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internuclear distances. There must be a very large number of these states playing a 
significant role in 'high-energy chemistry'. Recent progress in multiphoton ionization 
spectroscopy and synchrotron radiation spectroscopy will surely reveal this 
scientifically rich interesting world. 

4.2. Multichannel quantum defect theory 
The MQDT was first established by Seaton (1983) and his co-workers for treating 

atomic Rydberg states and continuum in a unified way. This was extended by Fano 
(1970) to the coupling in molecules between electronic and nuclear rotational motions 
based on the frame transformation. The generalization of the theory to the molecular 
rovibronic coupling problems was made by Jungen and Atabek (1977). Raoult and 
Jungen (198 1) and Giusti-Suzor and Lefebvre-Brion (1980) have further extended the 
theory so that one can deal with the auto-ionization problem. The essences of the 
MQDT are explained here. For simplicity, the theory is presented here only for the case 
of no 1 mixing and no electronic core excitation. 

In the inner region (r 5 To) of electron coordinate space, the total wavefunction is 
expanded in terms of the Born-Oppenheimer basis functions and is explicitly expressed 
as follows at r z ro: 

where #X represents the total wavefunctions for the angular part (3 of the Rydberg 
electron, for the core electrons r' and nuclear rovibrational motions, fi(v,r) is the 
energy-normalized one-centre Coulomb function which is regular at the origin and 
gt(v, r) is the corresponding one-centre Coulomb function which is irregular at origin; 
fi(v, r) and gz(v, r) have the following asymptotic forms (v = i/k): 

fi (-$)'I2 sin c I 
with 

1 1  
2 k  

c=kr--a+-ln(2kr)+arg 

(4.7) 

The term within the braces in equation (4.6) is the radial part of the Rydberg electron. 
The R-dependent quantum defect pA(R) effectively represents all the interactions 
(including exchange interaction) between the Rydberg electron and the core electrons. 

In the outer region (r 2 r,,), on the other hand, the total wavefunction is expanded in 
the way of close coupling as 

@s N +  = 65 N+(I', r'7 R)Cfi(vv + N +  r)av+ N + + gdVu+N+ , r)B~+N+l, (4.10) 

where u+ and N+ stand for the vibrational and rotational quantum numbers of the 
core. The radial part of the Rydberg electron (the term in square brackets in equation 
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(4.10)) is now R independent. Since the (u+, N + )  represents a channel (either open or 
closed) at r+co, the energy parameter v depends on them. In the intermediate region 
(r z r,,) (boundary between the two regions), both approximations (4.5) and (4.9) are 
assumed to hold well and the energy parameter v becomes almost independent of 
( v + ,  N + ) ,  because the kinetic energy of the Rydberg electron becomes much larger than 
the rovibrational energy spacing. Thus, by taking a projection between the two basis 
functions, we obtain 

(4.11 a) 

(4.1 1 b) 

where 
V u + N + , ~ A = ( N + l A ) ( v + l  cOs[XpA(R)llv>, (4.12a) 

N + ,"A= ( + I (u' I sin [npA(R)l I v > -  (4.12b) 

The quantity ( N + ( A )  represents the frame transformation of the angular parts 
(nuclear rotation plus Rydberg electron's angular part) between Hund's two coupling 
cases b and d (Fano 1970, Jungen and Atabek 1977, Chang and Fano 1972). Iu+)  and 
Iv )  are the vibrational states of the core and the Rydberg state. Insertion of equation 
(4.1 1) into equation (4.10) and application of the proper boundary conditions to 
equation (4.9) lead to the expression for the scattering matrix. The Coulomb functions 
f i  and g l  have the following asymptotic expressions at negative energies L = -$vz: 

fi(v, r) "2' sin (nv) u(v, r) - cos (nv) v(v, r), 

gl(v, r)+cos (XV) u(v, r) + sin (XV) v(v, r), 

(4.13 a) 

(4.13 b) 

where u(v, r)ccexp (r/v) and u(v, r) ccexp (- r/v). The coefficients of the function u(v, r) in 
the total wavefunction should be zero. Following the procedure by Seaton (1983) and 
introducing the reactance matrix R, we obtain 

R=!Roo-%oc[!Rcc+ tan(n~)]-'%~, (4.14) 

with 

92 = 9%- (4.15) 

where the matrix R is related to the scattering matrix as 

S=( l  +iR)(l-iR)-', (4.16) 

Y and V are the matrices whose elements are given by equation (4.12), and the 
subscripts o and c in equation (4.14) mean open and closed respectively. The second 
term in equation (4.14) represents the contribution from the closed channel (resonant 
scattering part). If there is no open channel, we obtain the following eigenvalue 
equation: 

det +tan (xv)~ =O. (4.17) 

This gives a spectrum of infinite number of perturbed Rydberg states. Since the 
vibrational states u +  of ionic core and u of Rydberg state are almost the same, the R 
dependence of the quantum defect ,uA(R) is the most decisive factor for the various 
dynamic processes involving vibrational transitions. 
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As can be understood from the above introduction, the MQDT provides a unified 
description of Rydberg states and ionization continuum. The matrix ‘8 is the most basic 
quantity for describing uniformly either the perturbed bound-state problem or the 
scattering problem. In order to treat a process such as dissociative recombination, the 
theory should be extended so as to incorporate the effects of dissociative superexcited 
state of the first kind. This can be done by the two-step treatment proposed by Giusti 
(1980). The scattering problem associated with the electronic coupling V(R)  between 
the dissociative superexcited state and the electronic continuum is described by the 
integral equation for the reactance matrix K 

where j ,  j f  and j” represent the vibrational (v)  or nuclear dissociation ( d )  state. Next, we 
introduce the matrix { U,} which diagonalizes the on-the-energy-shell K matrix, that is 

where -(tanqJ/x is the eigenvalue of the K 
perturbation theory, we have 

(4.19) 

matrix. If we employ the first-order 

for j = v  and j ’=d ,  

otherwise, 
(4.20) 

( ( I  - 2) fold degenerate), 
(4.21) 

where 

t2==C<,2, (4.22) 

I is the total number of channels (one dissociation channel and I-1 vibrational 
channels) and F, is the nuclear dissociation wavefunction. The basis function in the 
inner region is now taken to be 

u 

(4.23) 

(Pq = (4.24 a) 

(Pq = 8 2  { - gdv7 I )  cos [xpA(R)I  (4.24 b) sin [xpA(R)l}, 

and for the dissociation channel q = d  

(Pq = 6 d ( r  : R)FAR), (4.25 a) 

(pq = 4 d ( r  : R)GAR). (4.25 b) 

The function q5d represents the electronic wavefunction of the dissociative superexcited 
state, and G,(R) is the nuclear dissociation wavefunction which has a cosine asymptotic 
form. Here the function (pq plays the role of f i  in equation (4.6), and (pq that of 9,. In the 
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outer region, in addition to the ionization channel i = u +  defined by equation (4.10), the 
following dissociation channel is introduced: 

@d = 4 d ( l :  R)(Fdad + Gdfld)*  (4.26) 

Exactly the same procedure as before can be used. Equation (4.14H4.16) hold with the 
matrices %? and Y generalized as follows: 

gu+,a=~<u'Icos [ R p A ( R ) + q a l l U ) U u a ,  (4.27 a) 
U 

for the ionization channel (i= u + ) ,  and 

%d, a = uda cos qa,  (4.28 a) 

y d ,  a= uda sin q a  (4.28 b) 

for the dissociation channel (i=d). It should be noted that the rotational degrees of 
freedom are neglected here for simplicity and thus the factor ( N + J A )  is missing. The 
unitarity of the S matrix can easily be shown to be guaranteed. This is proved in 
Appendix C.  

Once the matrix % and then the scattering matrix S are obtained, the following 
various dynamic processes can be investigated uniformly. 

Dissociative recombination: the partial cross-section for the dissociation into 
channel d from the initial vibrational state u+ is given by 

(4.29) 

where pi represents the statistical factor and k is the initial (electron) 
wavenumber. 
Vibrational transition u: +u,f:  the partial cross-section is given by 

Associative ionization d-+u:: the cross-section is 

(4.30) 

(4.3 1) 

where k is the initial wavenumber of nuclear relative motion, p d  is the statistical 
factor of the initial dissociative state and L is the angular momentum of the 
nuclear relative motion. Here only one partial wave of the ejected electron and 
only one initial dissociative state are assumed. 
Photo-ionization and photodissociation: the rotationally unresolved cross- 
section is (Seaton 1983, Greene and Jungen 1985) 

47c2 
G - -ahwlDp12 (p =ionization, dissociation), 

b- 3 
(4.32) 
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160 Hiroki Nakamura 

where a is the fine-structure constant, ho is the photon energy and D, 
represents the reduced dipole-matrix element which is given by 

D ,  = D(Bopen)- xoc[xcc - exp (- 27civ)l- 'D(gclosed). (4.33) 
-_ 
1 he first term represents the direct process, and the second term describes the 
indirect process via the closed channel (Rydberg states). This second term can 
be used to analyse the auto-ionization and pre-dissociation mechanisms. 

The matrix x used in equation (4.33) is defined in terms of the Jost matrices J* as 

x =  J+(J-)-', (4.34) 

J'=%?*iY. (4.35) 

with 

The scattering matrix S and the matrix 9? are related to x by 

s = xoo - x , c c x c c  - exp (- 2 7 w  - k0, (4.36) 

%=i(1 -x)(1 + x ) - l .  (4.37) 

4.3. Photo-ionization and auto-ionization 
We discuss here the mechanisms and physics of the photon impact processes in the 

energy region near the first ionization threshold. There exist some intriguing problems 
such as 

( 1 )  the role of auto-ionization (pre-dissociation) in photo-ionization 
(photodissociation), 

(2) the different mechanisms of auto-ionization (vibrational and electronic auto- 
ionization) and 

(3) the competition between auto-ionization and pre-dissociation. 

These problems can be investigated in a unified way by the MQDT, as is explained 
in the previous section. Unfortunately, however, information is very scarce for the basic 
physical parameters: the R-dependent quantum defect pu,(R), the electronic coupling 
Y(R) and the reduced transition dipole moments. More challenge by the quantum 
chemists is desired. On the other hand, high-resolution spectroscopy, especially the 
resonantly enhanced multiphoton ionization (REMPI) spectroscopy is now well 
developed (for example Kimura (1987)). It enables us to derive useful information on 
the superexcited states and stimulates theoretical studies. 

The most extensively studied molecules are H, and NO. The studies up to 1985 
have been summarized by Greene and Jungen (1985). In the case of H,, photo- 
ionization, auto-ionization and photoelectron angular distributions were studied with 
the use of the MQDT by Jungen and co-workers (Dill and Jungen 1980, Jungen and 
Dill 1980, Raoult et al. 1980, Jungen and Raoult 1981, Raoult and Jungen 1981). In 
these studies, only the one-photon ionization process is considered and thus no 
superexcited state of the first kind is involved, since the lowest doubly excited state 
(near the ionization threshold) is that of the IC, symmetry (figure 21). Auto-ionization 
occurs only by the vibrational auto-ionization mechanism. Since information on the 
various doubly excited states of H, is now available (Collins and Schneider 1983, Hazi 
1983, Guberman 1983, Takagi and Nakamura 1983, Hara and Sato 1984, Tennyson 
and Noble 1985, Sato and Hara 1986) and the REMPI experiment is possible (Pratt 
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\ 

L 3 

1.0 2.0 3.0 4.0 5.0 6.0 7.0 
lnternuclear distance (a.u.) 

Figure 21. Potential curves of H, near the lowest ionic state. 
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162 Hiroki Nakamura 

et al. 1984, 1986, Verschuur and Van Linden van den Heuvell 1989), more extensive 
theoretical studies of H, should now be carried out. See also the studies by Dastidar 
and Lambropoulos (1982, 1984), Dastidar (1983), Dastidar et al. (1986), Ganguly et al. 
(1986), Rudolph et al. (1987), Ganguly and Dastidar (1988) and Dixit et al. (1989). The 
NO molecule has also been a good target of theoretical studies using the MQDT 
approach (Giusti-Suzor and Jungen 1984, Li 1986, Fredin et al. 1987, Raoult 1987, 
Sobolewski 1987, Rudolph et al. 1988, Pratt et al. 1989, Nakashima et al. 1989). There 
exist many dissociative superexcited states, and both vibrational and electronic auto- 
ionizations are possible. The REMPI technique can specify the symmetry of the states, 
pinpoint the energy region to be investigated and provide us with very useful 
information on the superexcited states. It is remarkable that the electronic auto- 
ionization via dissociative superexcited state of the first kind plays a significant role in 
auto-ionization (Giusti-Suzor and Jungen 1984, Nakashima et al. 1989). One example 
of analysis is given below. The MQDT approach has also been applied to some other 
diatomic molecules (Morin et al. 1982, Raoult et al. 1983, Giusti-Suzor and Lefebvre- 
Brion 1984, Lefebvre-Brion et al. 1985, Bordas et al. 1989, Lefebvre-Brion and Keller 
1989). 

In the following, by taking some practical examples we explain the applications of 
the MQDT, clarify the mechanisms of auto-ionization and analyse the REMPI 
experiment on NO (Achiba and Kimura 1989). 

First, we derive the analytical expression for the vibrational auto-ionization width 
(Takagi and Nakamura 1981). In the case of relatively low Rydberg states (n<N 10) 
which can be specified well by the quantum number A, the vibrational auto-ionization 
can be treated in a two-state (v+ (initial closed channel) and u: (final open channel)) 
approximation. Applying the boundary conditions of closed channel to equation (4.9) 
with the use of equations (4.11H4.13), we have 

C [sin(nvi)%?+ +cos(~v , )Y>+]A,=o,  
" 

(4.38) 

where %>+ and Y$ are those defined by equations (4.12) without (N'lA).  The 
standing-wave boundary condition for the open channel uf' leads to 

1 [sin (qf)%z+ -cos (qf),4Py]~, = 0, (4.39) 
0 

where qf is the scattering phase shift. Equations (4.38) and (4.39) are reduced to 

K:  sin (qf - g), Kf sin (q - Of) 
K:  sin (mi + 0;). Ki sin (nvi + 0;) 

I =0, (4.40) 

where 

and Iu) is assumed to be equal to Iu+). By fitting the energy dependence of the phase 
shift qf derived from equation (4.40) to a form 

(4.42) 
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the resonance energy E, and the vibrational auto-ionization width rv can be obtained 
as 

1 E = -  
* 2(n ' 

-2 tanrf 1 
n 1 + 2  (n-B)3' 

-___ rV=- 

where 
4K tan 6 ,  tan 6, 

(1-K)' 1+tan2(qP-8,)' 
tanrf=- 

(4.43) 

(4.44) 

(4.45 a)  

E = tan r f  tan (q,  - 8,) + tan (q,  - Q, (4.45 b) 

8,-tan-'t B= 7[: 7 (4.45 c) 

8, =+(c + O;), a = i, f, 
6,  =+(G - 8;), a= i, f, 

(4.45 d)  

(4.45 e) 

tan6, a=i,f, (4.45 f )  l + K  tan (qp - 8J = - 
l - K  

K:K: K=- 
K~K;' (4.45 9) 

and n is the principal quantum number. Equation (4.44) is an exact expression within 
the two-state approximation and shows the well known n-3  dependence of r. When K 
can be assumed to be small, which is expected to hold well quite generally, equation 
(4.44) can be simplified to 

2 sin (26,) sin (26,) 
TC ( ~ - O ~ / T C ) ~  ' 

r v % - - K  (4.46) 

If we retain only the first term in the expansion of the quantum defect number around 
the equilibrium distance Re, then we have 

where 

If we can further use the harmonic oscillator approximation, then we obtain 

(4.47) 

(4.48) 

(4.49 a)  

(4.49 b) 
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164 Hiroki Nakamura 

where Au = Iu? -u: 1, m is the reduced mass and co is the angular frequency of the 
harmonic oscillator. Equations (4.47) and (4.49) are equivalent to the crude Born- 
Oppenheimer approximation (Herzberg and Jungen 1972, Dehmer and Chupka 1976). 
Figures 22 and 23 show the u+ dependence of rv and rV(Au)/rv(Au = 1) against Av for 
H, (npo) respectively. The results obtained by Berry and Nielsen (1970) and by Shaw 
and Berry (1972) are those of the first-order perturbation of non-adiabatic coupling. 
The present results (equation (4.44)) are in good agreement with experiment 
(Dehmer and Chupka 1976). Figure 23 clearly indicates the well known propensity rule, 
Tv(Au = 1) % rJAu = 2) 9 . . . . The crude Born-Oppenheimer approximations (4.47) 
and (4.49) were shown not to hold well always, because the linear dependence on R of 

30 

L 
I g 20 

1 2 3 4 5 6 7 

INITIAL VIBRATIONAL QUANTUM NUMBER Vi 
Figure 22. Vibrational auto-ionization width (Z,,T(Au)) as a function of the initial vibrational 

quantum number in the case of H, (npa) (the numbers on the lines indicate the principal 
quantum numbers): (-), Takagi and Nakamura (1981); (. . . . -), Berry and Nielsen (1970); 
(... A-..), Shaw and Berry(1972); (-- 0 --), ortho-H,, experiment (Dehmer and Chupka 
1976); (-- --), para-H,, experiment (Dehmer and Chupka 1976). 
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7.0 
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5.0 
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3.0 

2.0 

1 .o 

0.0 

-1 .o 

-2 .o 

1 2 3 4 5 6 7 

DIFFERENCE OF VIBRATIONAL QUANTUM NUMBERS AV 

Figure 23. Propensity of vibrational auto-ionization in the case of H, (npo): (-), Takagi and 
Nakamura (1981); (. . . A.. .), Berry and Nielsen (1970); (---b crude Born-Oppenheimer 
approximation. 
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the quantum defect does not necessarily hold well and the anharmonicity becomes 
important sometimes, especially for Au 2 2. Equation (4.46) is quite accurate but is 
unfortunately still complicated. So, we recommend here the following expression for 
practical use: 

(4.50) 

Pure rotational de-excitation within the same vibrational level can also lead to auto- 
ionization. In this case the R dependence of the quantum defect can be disregarded, and 
V and Y are reduced to 

w;+ =(N+~n)cos(n~/J ,  (4.51 a) 

9;' = ( N  + In) sin (ap,,). (4.5 1 b) 

The procedure and the formulae described above hold with the various quantities 
defined below. For simplicity, we consider here the case of the two channels N + = 0 and 
2 (thus A = O  (0) and 1 (n). Then we have 

coscl, sins]=[ J4 JS] 
-sincl, coscl - J$ J$ ' ("In)= 

N +  - 6, -=PA? 

K =  -tan2cl, 

(4.52 a) 

(4.52 b) 

(4.52 c) 

(4.52d) 

(4.52 e) 

tan (q, - Oi) = tan (qp - 6,) =tan 6 cos (24, (4.52 f) 
-sin2 (2a) sin2 6 

1 - sin2 (2a) sin2 6' 
tanij= (4.52 9) 

The expression for the phase shift qf derived from equation (4.40) is the same as 
equation (34) of Fano (1970). If we can assume that 161 6 1,161 < 1 and IBI 6 n, then we find 
that 

(4.53) 

This is equivalent to the formula employed by Herzberg and Jungen (1972). 
Next, let us consider the case in which a dissociative superexcited state of first kind 

coexists and electronic auto-ionization is also involved. For clarity, we take, as an 
example, the recent MQDT analysis (Nakashima et al. 1989) of the REMPI experiment 
on NO (Achiba and Kimura 1989). Using the (2+ 1)-photon process, Achiba and 
Kimura (1 989) measured the photo-ionization and photoelectron kinetic energy 
spectra. Figure 24 (a) shows the photo-ionization spectrum against the wavelength of 
the third photon (second laser). Figure 25 shows the kinetic energy spectrum of the 
photoelectrons originating from the nd6 (u =4) Rydberg states (n = 5-9). Although the 
v t  = 3 peak is the highest, u+ = O  gives the second highest. This clearly contradicts the 
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n=7 

167 

n=9 

470 460 450 

Probe Laser Wavelength,w,(nm) 
(4 

I l\ I /J\ I I\ 

n=6 

I 

n=12 

Figure 24. Photo-ionization spectra. (a) The experimental MPI spectrum (Achiba and Kimura 
1989). The shaded peaks correspond to nd6 (u = 4). (b) Theoretical calculation of nd6 peaks 
(Nakashima et al. 1989). 
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Photoelectron Time of Flight (ns) 

u+=o i A 3  9d6(4) 
50 150 250 350 450 550 
I I I I I I 

\ I  I '  ' 7d6 (4) 

5d6 (4) \ '  
\' 
I1 ,L, I 

1.0 0.5 0.1 0.05 0.03 

Photoelectron Energy (eV) 
Figure 25. Photo-ionization kinetic energy spectra of NO for nd8 (u = 4) ( n  = 5-9) (Achiba and 

Kimura 1989). 

propensity rule of vibrational auto-ionization and suggests a large contribution of the 
electronic auto-ionization via the dissociative superexcited state B zA, which is 
expected to be located near the equilibrium internuclear distance. In order to make this 
clear first, we have calculated the quantum defects at various internuclear distances. 
Table 1 gives a rough estimate of T,(Au = 2)/rv(Av = 1) with use of equation (4.49 b) and 
the calculated quantum defects. This result clearly tells that the vibrational auto- 
ionization is not dominant, at least for Av > 2. Analysis of the experiment was carried 
out based on the two-step MQDT formalism described in section 4.2. Since this is a 
resonant process, we concentrate on the second term of equation (4.33): 

p : s )  - xu+.,Cx,,-exP(-2~i~)1 -lD"R? (4.54) 

where only one closed channel vR (Rydberg state ndd (v =4)) is assumed. If we note that 
the Jost matrices J' defined by equation (4.35) can be expressed as 

J+=X*UA* 
> (4.55) 
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Table 1.  Ratio of the vibrational auto-ionization widths T(Av=2)/r(Av= 1) for the NO 
Rydberg states (Nakashima et al. 1989). 

11 su PO P= do dn d6 

4.36 x 5.60 x 6-43 x 7-14 x 1.99 x 1.32 x 
T(AL\v = 2) 
~ ( A u  = 1) 

i = j =  1, where 

( i= l , j# l ) ,  ( i#1 ,  j=l) ,  (4.56) 
(ilexp [ &izp(R)]Ij), otherwise, 

(A*)ij = exp ( iqi) 6 ,  (4.57) 

then we can easily show that 

x=X+(UA+U~)’(X-)-’. (4.58) 

Here the channel i = l  ( I )  corresponds to dissociation (Rydberg state 0,) and 
i = 2 -(I - 1) correspond to ionization continua (u’). Using the explicit expressions for 
U (Giusti 1980) and K (equation (4.20)), we obtain 

2i 2 
(UA+UT)2 = 1 - 52+1x~ - __ <2 + * bQ2. (4.59) 

Neglecting the R dependence of the quantum defect (p (R)wp) ,  we can obtain 

(4.60 a) 

xvnyl = exp (2i7cp) (4.60 b) 

As is seen from equations (4.54) and (4.60 a), the final vibrational state distribution in 
photo-ionization is proportional to <,”+, that is 

vibrational branching ratio cc <,”+ . (4.61) 

On the other hand, the resonant photo-ionization profile is determined by the second 
term of equation (4.54). Expanding the energy parameter v around the resonance 
position vo = 1 / ( 2 ~ ~ ) ’ ’ ~  = n, (effective principal quantum number) as v - vo w$v: (~  -E,), 

we have 

where the bandwidth r is given by 

(4.63) 

Using equation (4.61) and assuming that <,+ M Vo(u’IF,), where V, represents the 
average strength of electronic coupling V(R), we have determined the repulsive part of 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
7
:
3
9
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



170 Hiroki Nakamura 

the potential curve of the dissociative superexcited state B 'A from the experimentally 
observed vibrational branching ratio. Then, by using equation (4.63), the electronic 
coupling strength V, is estimated to be about 0.002atomic units from the observed 
bandwidth of 6dd(v=4). In order to make sure that the above-mentioned simple 
Franck-Condon factor analysis is valid, a full MQDT calculation with the information 
obtained above is also carried out. The results are shown in table 2. This table clearly 
proves that the vibrational auto-ionization can be safely neglected for the Au 2 2 
transitions. The photo-ionization spectrum corresponding to the ndd resonances is also 
calculated theoretically and is shown in figure 24 (b) in comparison with experiment. 

The analysis explained above clearly indicates that the combination of the REMPI 
experiment and its analysis by MQDT is very useful and effective for revealing the 
nature of the superexcited states. The information deduced from this kind of analysis 
can be usefully employed to investigate other various dynamic processes involving 
these superexcited states. Another significant and intriguing fact is the role of the 
electronic auto-ionization via a dissociative superexcited state of the first kind. The 
electronic auto-ionization gives a very different propensity rule from that of the 
vibrational auto-ionization, and the vibrational distribution is essentially given by the 
Franck-Condon-like factor 5,. It is rather surprising that the two-step ionization 
process, Rydberg state-dissociative state jauto-ionization, dominates the one-step 
vibrational auto-ionization. This phenomenon was actually first found and analysed 
by Giusti and Jungen (1984) for the case of NO 211. This is expected to be a general 
phenomenon, because the electronic coupling seems to be generally quite strong 
compared with the rovibrational coupling represented by the R dependence of the 
quantum defect. 

The importance of the dissociative superexcited state should also be noted in the 
analysis of photoelectron spectrum in the case when only the first kind of superexcited 
states are involved (Nakamura 1975). Figure 26 shows a schematic potential diagram 
which includes one attractive (Es(R)) and one dissociative (Ed(R)) superexcited state of 
the first kind. The observed photoelectron spectrum or vibrational state distribution of 
a molecular ion is a superposition of two transitions: auto-ionization from the 
attractive superexcited state, and autoionization from the dissociative state. Since such 
a transition that conserves the internal (electronic) energy is considered to be dominant, 
these two are expected to give very different vibrational state distributions as 
designated by the curves E' and E", respectively. These two curves are defined as 

E - E,(R) = E - Eio,,(R), (4.64 a)  

E - Ed(R) = E" - Eio,(R). (4.64 b) 

Table 2. Photoelectron branching ratio. Comparison of the Franck-Condon factor analysis 
(FCF) and the MQDT analysis (Nakashima et al. 1989). 

u,=o Vf= 1 v,=2 

State FCF MQDT FCF MQDT FCF MQDT 

5d6 1.00 1.00 0.10 0.10 0.18 0.21 
6d6 1.00 1.00 0.40 0.39 030 032 
7d6 1.00 1.00 0.50 0.50 0.48 054 
8d6 1.00 1.00 0.85 0.86 0.20 020 
9d6 1-00 1.00 0.96 0.97 0.15 0-16 
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R 
Figure 26. Internal (vibrational) energy distribution of molecular ion by electronic auto- 

ionization. E' represents that for the case of auto-ionization of the attractive superexcited 
state E,(R). E" represents that in the case of Ed@). 

The auto-ionization from the dissociative state gives a higher vibrational state 
distribution. Since dissociative superexcited states are not well known despite the fact 
that these are expected to exist in various molecules, analysis of the photoelectron 
spectrum should be carried out with care. 

4.4. Dissociative recombination, vibrational transition and associative ionization 
Dissociative recombination is a process to produce neutral species (atoms or 

moleclues) from positive molecular ions by recombination collisions with slow 
electrons. A dissociative superexcited state of the first kind plays a crucial role in this 
process. This is considered to be an important process in various application fields such 
as dense plasma and astronomy and has been attracting much academic interest as well 
(Mitchell and Guberman 1989). There are two kinds of process: 

(1) a direct process, in which an incident electron is captured directly into the 
dissociative superexcited state and 

(2) an indirect process, in which an electron is first captured into a rovibrationally 
excited Rydberg state. 

Thus both kinds of superexcited state again participate in the process, and the two- 
step formalism of MQDT described in section 4.2 can be usefully employed. The effects 
of a countable infinite number of Rydberg states can be taken into account nicely by 
this theory. The most decisive factor is whether the dissociative state crosses the ionic 
state near the equilibrium internuclear distance or not. 

Here, we discuss, as an example, the dissociative recombination of H l  and its 
isotopic molecules via the lowest doubly excited dissociative state lZe ( 2 ~ 0 , ) ~  (Takagi 
and Nakamura 1986, Nakashima et al. 1987). Information on the basic quantities p(R)  
and V(R)  and also the potential energy curves of the dissociative state is taken from 
previous scattering calculations (Takagi and Nakamura 198 1). The potential energy 
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Figure 27. Dissociative recombination cross-section as a function of electron energy for HZ 

(u = 1). Single arrows indicate the closed-channel Rydberg states (n, u)  and double arrows 
show the opening of the inelastic channels u = 2  and 3 (Nakashima et al. 1987). 

curves of H, near the ionization threshold are shown in figure 21. The doubly excited 
state lZs (2paJ2 is known to couple almost exclusively to the d6 partial wave, and thus 
the cross-sections for dissociative recombination and vibrational transition are given 
by equations (4.29) and (4.30) with pi =t. This statistical factor comes from the fact that 
only the singlet scattering contributes to the dissociative recombination. Thus the 
cross-sections for the vibrational transitions calculated from equation (4.30) are those 
for the singlet d6 partial wave scattering. Figures 27, 29 and 30 show some of the 
calculated results. Figure 27 shows the cross-section for the dissociative recombination 
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of H i  (ui= 1). The rich structure seen in this figure is due to the infinite number of 
closed-channel Rydberg states. Each dip represents a resonance, corresponding to a 
vibrationally excited Rydberg state (n, u). Some of them are indicated by arrows. The 
double arrows in the figure indicate the opening of vibrationally inelastic channels 
(u+ = 2,3). The broken curve is the envelope of the curves, indicating roughly the E - 
dependence on the electron energy E, which essentially comes from the l/k2 in equation 
(4.29). Figure 28 shows the recent merging beam experiment (Hus et al. 1988). Although 

t 
.- 0 10-15 
0 
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% I 10-16 
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Figure 28. Experimentally observed cross-section of dissociative recombination (Hus et al. 
1988). 

Figure 29. Isotope effect in dissociative recombination of H,f (v = 3). The cross-sections 
convoluted as described in the text. 

are 
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174 Hiroki Nakamura 

a detailed comparison with our theoretical work is still premature, the agreement seems 
to be quite good (the main vibrational state in the H: beam is considered to be u = 1). 
Not only the sharp dip at E ~ 0 . 1  eV but also the absolute value of the cross-section are 
in good accordance with each other. Figure 29 shows an interesting isotope effect for 
the case ui = 3. In order to make a direct comparison possible, the cross-sections are 
convoluted with use of the triangular apparatus function of half-width 0.04 eV. This 
isotope effect can be explained by the two facts that the energy dependence apart from 
the l / k z  dependence is mainly determined by the factor 5, defined by equation (4.20) 
and the fact ihat this factor has different energy dependences for H l  (u  = 3), HD’ (u = 3) 
and D l  (u = 3). 3(D2+) happens to have a zero at E z 0 5  eV, which causes a large dip 
in the cross-section there. On the other hand, 15,=,(HD+)I increases strongly with 
increasing energy in the energy region that we are interested in and roughly cancels the 
factor l/k2. Figure 30 shows the convoluted cross-sections for the dissociative 
recombination cross-section and also the vibrational transitions (u: = 0-3)  for HD’ 
(v = 1 ) .  This figure tells clearly that the energy dependence of the vibrational transitions 
resembles very much that of the dissociative recombination. This implies that even the 
vibrational transitions are dictated by the factors 5,. That is to say, the dominant 
pathway for the vibrational transition vi-+vf is the two-step process via the dissociative 
superexcited state d, that is ui--+d+vf. 

The above-mentioned features can be substantiated by the following simple 
analysis of the MQDT approach. Assuming that no closed channel is involved, 
employing the first-order perturbation approximation to the K matrix as we did in 
section 4.2, and using the results described in the Appendix of the paper by Giusti 
(1980), we can obtain the following expressions for the S matrix elements: 

(4.65) 

(4.66) 

where 

Mvvr = (vl exp [ixp(R)] Iv’}. (4.67) 

Since the R dependence of p(R)  is not strong and thus the IMvvrl (v # u’) values are small 
compared with the diagonal elements lMvvl, we retain only the diagonal elements of M. 
Then we have 

(4.68) 

(4.69) 

(4.70) 

Since lMvvl x 1, the similar energy dependence of the various cross-sections can be 
explained by the fact that the common factor Sui appears in the above expressions. 

The role played by the dissociative superexcited state in the vibrational transitions 
gives another example to show the importance of this kind of state. It should not be 
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10-14 1 

Figure 30. Convoluted cross-sections for dissociative recombination ( d )  of HD+ (u = 1) and for 
vibrational transitions u = 1 +&3. 

Table 3. Dissociative recombination rate &=ao [100/T(K)]Ycm3 s-' (Nakashima eta!. 1987). 

0 2.31 x lo- '  0.29 2 . 2 6 ~  lo- '  0.44 4-11 x 0.12 
1 1.81 x 0.50 1 . 5 4 ~  0.47 1 . 1 9 ~  0.49 
2 1 . 3 4 ~  lo-' 0.66 1 . 5 8 ~  0.60 1 . 5 4 ~  0.52 
3 1 . 9 8 ~  lo-' 0.32 6 .46~10- "  -0.16 6 3 4 ~ 1 0 - '  0.83 
4 3 . 2 6 ~  lo-' 0.77 5.55 x lo-' 0.58 4 . 0 2 ~  lo-' 0.43 
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176 Hiroki Nakamura 

forgotten, however, that the complicated resonance structures in the cross-section as a 
function of energy are the manifestations of the interference between the indirect and 
direct processes and thus are produced by the existence of the closed-channel Rydberg 
states. Interestingly, these resonances appear almost exclusively as dips. This can be 
explained again by the fact that the off-diagonal elements Mvvr are smaller than &, 
values, since Fano's resonance profile index q corresponds to M v v i / ~ u ~ o i .  A very rough 
estimate of the rate constants of dissociative recombination was made by using the 
straight-line envelopes like that shown in figure 27. Assuming the energy dependence 
of the cross section to be 0 =A,!-@,  we have the following expression for the rate 
constant u: 

u = A ($) '''r(2 - BXkB T )  - 8, (4.71) 

where me is the electron mass, k,  is the Boltzmann constant and T is the temperature. 
The results are summarized in table 3. 

As has frequently been pointed out so far, information on the quantum defect p(R), 
the electronic coupling V(R) and the potential curves of superexcited states is crucial to 
understanding the dynamic processes such as dissociative recombination. Such 
information is, however, very scarce. Quantum-chemical calculations of these 
quantities and also the MQDT analyses of the REMPI experiments are really desired. 
A nice example of the former case is CH. Recently, Takagi et al. (1990) carried out an 
elaborate quantum-chemical calculation for this system and estimated the dissociative 
recombination rate constant to be about 1.12 x lo-' cm3 s-' at T= 120K which is in 
fairly good agreement with the merging-beam experiment (Mitchell and McGowan 
1978). A good example for the second case is NO as described in the previous section. 
With use of the information obtained there (Nakashima et al. 1989) and also by Raoult 
(1987), the various dynamic processes of NO can be investigated. 

The inverse process of dissociative recombination, that is associative ionization, has 
also been studied recently (Urbain and Giusti-Suzor 1987, Takagi and Nakamura 
1988). Although some additional care is required with respect to the initial state, the 
calculations can be done essentially in the same way as dissociative recombination. The 
rotationally unresolved results are shown in figure 31 for the process H(2s) + H+H;(v) 

0.8 1 .o 1.2 1.4 

COLLISION ENERGY (eV) 

Figure 31. Cross-section for the associative ionization H(2s)+ H+H;(v) +e. The numbers in 
the figure indicate the final vibrational quantum numbers. 
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Electronic transitions in molecular dynamic processes 177 

+e. The dominant contribution comes from u=O and 1. There are many resonances 
caused by the indirect processes via intermediate vibrationally excited Rydberg states. 
These have survived the summation over L and u (see equation (4.31)). 

5. Concluding remarks 
The basic interactions governing electronic transitions in various molecular 

(1) non-adiabatic radial coupling, 
(2) non-adiabatic rotational (Coriolis) coupling, 
(3) configuration interaction between discrete superexcited state of first kind and 

electronic continuum and 
(4) rovibronic coupling among Rydberg states. 

The first two can be treated in a unified way by introducing the DS representation in 
spite of their difference in nature. The semiclassical theory for these non-adiabatic 
transitions was proved to be powerful. The wide applicability of the semiclassical 
theory was demonstrated. The significance of non-adiabatic tunnelling is emphasized 
and the working equations are proposed. Although no discussion was given here, the 
ordinary atom-diatom chemical reaction can be viewed as a vibrationally non- 
adiabatic transition and can be treated in some cases even analytically by using the 
semiclassical theory. By employing the hyperspherical coordinate system, a reactive 
transition (particle rearrangement) can be explicitly shown to occur in a spatially 
localized region near the so-called ‘potential ridge’, the watershed dividing the initial 
and final channel valleys. These features of the chemical reaction are summarized in a 
recent review article by Ohsaki and Nakamura (1990). This gives another example of 
the interdisciplinarity of the concept of the non-adiabatic transition. 

Superexcited states are classified into two kinds, and their difference in decay 
mechanism is clarified. A variety of their dynamic processes can be analysed in a unified 
way to some extent by using the MQDT. A combination ofthe REMPI experiment and 
the MQDT analysis was demonstrated to be very powerful and useful to explore the 
world of highly excited states of molecules. Electronic auto-ionization was shown 
generally to dominate vibrational auto-ionization. In particular, a dissociative 
superexcited state of the first kind was found to play an important role in various 
processes and much more care should be devoted to its existence and dynamical role. 

In conclusion, the developments to be made in future are summarized based on the 
present author’s viewpoint. The semiclassical theory for the non-adiabatic transition 
should be extended to multidimensional cases. This is one of the most challenging and 
significant problems, since most of the physical phenomena intrinsically occur in a 
multidimensional space. Although a perturbative golden rule approach to tunnelling 
proved to be quite successful in some cases (Pacey et al. 1986, Siebrand et al. 1984a, b), 
the basic non-perturbative semiclassical theory for multidimensional non-adiabatic 
tunnelling as well as simple tunnelling should be further developed. The theory should 
also be generalized into the statistical mechanical framework so that the effects of 
fluctuation and dissipation can be taken into account (Nasu and Kayanuma 1980, 
Kayanuma 1982, 1984a,b, 1985, Wolynes 1987, Leggett et al. 1987). See also the 
following works concerning tunnelling (Caldeira and Leggett 1983, Razavy and 
Pimpale 1988). The role of avoided crossing in the classical chaotic behaviour of the 
quantum energy spectrum would also be an interesting subject to be investigated 

dynamic processes are classified into the following four types: 
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further. An electronically non-adiabatic chemical reaction should of course be an 
important target of the semiclassical theory. Much effort should also be devoted to 
non-adiabatic tunnelling which is supposed to play a crucial role in phase change in 
various fields. Even the most basic two-state one-dimensional theory is not very 
satisfactory yet. 

Concerning the superexcited states, more studies, both spectroscopic and 
dynamical, are needed without doubt. The dynamics of superexcited states, especially 
of polyatomic molecules, would open up new interesting fields of physics and 
chemistry. Complicated chaotic behaviour in both the electronic degrees of freedom 
and the nuclear (vibrational) degrees of freedom are involved and coupled. Since 
information on the basic parameters of the superexcited states is so scarce at present, 
not only the more extensive challenge of quantum chemistry is desired, but also the 
elaborate interplay between the REMPI-type high-resolution experiment and the 
MQDT-type theoretical analysis is also required. Another challenging subject is to 
find and understand uniformly some peculiar modes of collective motion in a variety of 
quantum-mechanical finite many-body systems with strong interparticle correlation. 
The interesting collective motions in doubly excited states of atoms have been quite 
successfully analysed by the algebraic approach and the hyperspherical coordinate 
approach (for example Herrick (1983), Watanabe and Lin (1986) and Iwai and 
Nakamura (1989)). On the other hand, mode couplihg and normal-to-local mode 
transformation in the vibrationally highly excited states have also been extensively 
studied (for example Child and Halonen (1984) and Levine and Kinsey (1986)). Such 
systematic studies from the viewpoint of collective motion should be carried out for the 
superexcited (doubly excited) states of molecules. Generally speaking, strong 
interparticle coupling causes some kind of phase transition and collective motion of a 
whole system. It would be a challenging subject to find, if any, a universality or 
isomorphism among and to comprehend in a unified context the peculiar properties 
and dynamics of the various kinds of finite many-body system such as systems of 
nucleons, atomic and molecular electrons, and atoms and molecules. 
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Appendix A 

Derivation of the semiclassical S matrix for the LandawZener- and Rosen-Zener-type 
non-adiabatic transitions 

Here we derive the explicit expressions of the semiclassical S matrix given in section 
3.3. The method described below is based on the comparison equation method (Miller 
and Good 1953, Berry and Mount 1972, Dubrovskii 1964). 

We start with the conventional time-dependent Schrodinger equation in the 
diabatic state representation, 
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Electronic transitions in molecular dynamic processes 179 

I-(a,)=-exp( . d  V -f o(x')dx')a,, 
- m  dx U 

where a, is the expansion coefficient for the diabatic state n( = 1,2), hV is the diabatic 
coupling, x=ut with velocity u, and ho represents the difference of the two diabatic 
state potential energies. The transformation 

az(x) = V1/2 exp (- -!- lx dx')  dx') A(x) 
20 - -m 

leads to the following single equation: 

where 

b"2(x,u)=- - --v- - -""(V;X), 
4 h  l(,,>. iz" :x(oy) 

(AE)' = h2u2(x) + 4hZ V2(x) 

is the adiabatic state energy difference and 

is the Schwartz derivative. The asymptotic solutions of equation (A 3) are written as 

[ (&)l'z[Clexp(-f S:'Odx') 

where x j  ( j -  1,2) represent the real parts of the complex zeros (bj) of 8 (xl < 0, x2 >O). 
The transition matrix T is defined by 

and is equivalent to the scattering matrix apart from the phase factor. 

approximations. 
In order to derive the analytical expression of T we employ the following 

(1) AE dominancy: at low velocities, AE becomes dominant and sZ(x,v) can be 
expressed as 

1 AE i 1 dW 
2 (1 + W2)'/' dx 

S(x,V)x2 h - - U  - + Q(x, u), 
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180 Hiroki Nakamura 

where W=(w/2)/Vand Q(x, u) represents a correction. The complex zeros bj of 
0 are approximated by those of AE. 

(2) The avoided crossing points xi (j=1,2) are located far from the turning 
point x = 0. 

Thus the whole problem is divided into the two problems: one for Rex<O, the 
connection between (Cl, C,) and (C3, CJ, and the other for Rex>O, the connection 
between (C5, C,) and (C,, C,) (see figure A 1). Each problem represents a two-transition 
point problem with order unity in the theory of asymptotic solution of the second-order 
differential equation (Evgrafov and Fedoryuk 1966, Shibuya 1975); thus this can be 
solved in terms of the properties of the Weber equation which is the standard equation 
of this kind (Heading 1962). By the transformation 

the solution A(x) can be expressed in terms of the Weber (parabolic cylinder) function 
W X ) )  as 

where 

with y = Im x. This method is called the comparison equation method (Miller and 
Good 1953, Berry and Mount 1972). The connection between the two asymptotic 
expansions of the Weber function is well known from its Stokes phenomenon (Heading 
1962). This is explicitly given as follows: 

Irn X 

I 

Figure 32. Complex x plane where the bj ( j =  1-4) are the transition points (zero points of BE): 
(-), the Stokes lines. 
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where 

c)[ 1 + exp (- ~xc)]’/’ exp [i&)] 
- i exp (- n ~ )  

i exp ( - nc) 

f-l(c)[l +exp(-2n~)]’/~exp [-ic#+)] 

(A 15) 

&) = c - c In c + arg [r($+ i~)]. (A 17) 
First we derive the connection between (Cl, C,) and (C,, C4). Since from equation (A 10) 
we have 

(A 18) 
with 

-AEdy7 y=Imx, 

we can obtain the following connection formula: 

where 

The same procedure can be employed to derive the connection formula between 
(C57 C,) and (C7, C*): 

where 

= IT (transposed), 
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and D, is the same as D, except for E replaced by L’ with 

The connection between (C3, C,) and (C5, C,) is obtained simply as 

with 

and 

where the correction Q(x, v )  in equation (A 9) gives the term z in equation (A 27) within 
the original Landau-Zener model. The contributions of Q tot, d ,  Q1 and @, are usually 
neglected. This point remains to be further investigated. The transition matrix T is 
given by 

0 exp(-i@) O ]I, 

where 

do = - 2@, = 2Q2. (A 32) 
I TI , I 2  obtained from equation (A 29) gives the same overall transition probability as 

equation (3.31) in the main text. However, we want to generalize the theory so as to be 
extendable to a multilevel problem in the spirit of path-integral formulation (Miller and 
George 1972, Miller 1974). In the above procedure we have been considering the time 
evolution of the system, assuming tacitly a certain kind of common trajectory R(t). 
Now, we take into account the fact that there are two possible classical trajectories 
along the adiabatic potential curves En@) (n = 1,2) (E2(R) > E,(R)) and that there holds 
a general correspondence 

1 V JAEdx- l [ k l ( R ) - k , ( R ) ]  dR, (A 33) 

where 
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Electronic transitions in molecular dynamic processes 183 

Then, we can generalize the quantities y, (ro and @ in the spirit of the path-integral 
formulation. Taking into account the phase contribution from the scattering at R =- R, 
and also the requirement that the scattering matrix should coincide with the proper 
potential scattering matrix in the adiabatic (6+m) and the diabatic (6+0) limits, we 
finally obtain the expression for the S matrix in the form (2.1). It should be noted that y 
is replaced by S I X  and & = z - Cpo. In the above-mentioned procedure based on the 
comparison equation method it is assumed that the adiabatic potential energy 
difference AE has complex zeros of order 3 (thus the corresponding non-adiabatic 
coupling always has poles of order unity there), as is seen from the transformation 
(A 10). See also Crothers (1971) for other derivations. 

The method mentioned above cannot be used to derive the Rosen-Zener formula 
(3.36). Employing the transformation used by Dykhne and Chaplik (1963) and a new 
asymptotic expansion of the Weber function (Crothers 1972), Crothers derived 
equation (3.36) with sech6 in place of 2[pR,(l - p R Z ) ] 1 / 2  (Crothers 1976). It should be 
noted that there is no Stokes phase correction. In the Landau-Zener model the 
ordinary asymptotic expansion of the Weber function for a large argument is used. The 
large argument physically corresponds to the divergence of the diabatic potential 
curves away from the crossing point. In the Rosen-Zener model a new asymptotic 
expansion is required for the case when both the argument and the index are large, 
which corresponds to strong diabatic coupling. The scattering matrix expression (2.1) 
with equations (3.34) and (3.35) is a simple generalization in the same spirit of path- 
integral formulation as that used in the Landau-Zener case. 

Appendix B 

Derivation of equations (3.77) 
Being based on the diagram in figure 15, we derive here the expressions for the 

matrix AH given by equations (3.77). The quantities Vk and Vi (n  = 1,2) in this diagram 
represent as before the coefficients of the outgoing and incoming waves respectively 
along the adiabatic potential E,(R) on the right side of the crossing region and U; and 
U i  (n= 1,2) those on the left side (see equations (3.69) and (3.70)). In terms of these 
coefficients we introduce the following vectors: 

Now U' and V' are connected by the non-adiabatic transition 

V=O,U' 

and U" and V" by 
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where Ox and I, are given by equations (3.22) and (3.23). Since U, and U i  and also V; 
and V ;  are directly related by wave propagation and reflection along E,(R), we have 

- = LZ(b,, &) u; 
V ;  

v; 
(B 3) 

- = L 2 ( R X ,  cZ)7 

where 

L(A,B)=exp(iy,(A,B)+ ai). (B 4) 

From equations (B 2) and (B 3) we can obtain the following expressions for the matrix 
AH (see the definition of the matrix A in equation (3.68)): 

where On, and I,, are the (n ,m)  elements of the matrices 0, and 1, respectively. 
Insertion of equation (B4) and the explicit expressions for On, and I,, given by 
equations (3.22) and (3.23) leads directly to equations (3.77). Unitarity and symmetry of 
the matrix AH can be directly proved. 

Appendix C 

Unitarity of the S matrix defined by equation (4.16) 
We prove here the symmetry of the real matrix % of equation (4.1 5), because this 

First, we show the unitarity of J* which is expressed as (see equations (4.27), (4.28) 
guarantees the unitarity of S. 

and (4.35)) 

C (il exp C * i(npn,(R) + qa)l Iu)Uua, for i = u+, 
J?= (C 1) 

la Uda exp ( f h a ) ?  for i = d .  

From this expression, we have 

= daaj. 
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Here the completeness of the vibrational manifold (0') and the unitarity of U are 
assumed. Next, the unitarity of x can be proved 

xtx=(J-t)-'J+tJ+(J-)-' 

= (J - t)- '( J -)- ' 
=(J-J-t)-'=l.  

Finally, the symmetry of % is shown as follows: 

9IT(transposed) = i(l + 1')- '( 1 - x') 

= i[ 1 + ( x -  ')*I-'[ 1 - (x - ' ) * ]  
= -i(l +x*)-'x*(x-')*(l - x * )  
=[i(l+x)-'(1-x)]* 
= %* 

= 93. (C 4) 
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